ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-11-71-78

УДК: 535.42

Optical tweezers with acousto-optic control

For Russian citation (Opticheskii Zhurnal):

Морозов А.И., Мачихин А.С., Козлов А.Б., Пожар В.Э. Оптический пинцет с акустооптическим управлением // Оптический журнал. 2023. Т. 90. № 11. С. 71–78. http://doi.org/10.17586/1023-5086-2023-90-11-71-78

 

Morozov A.I., Machikhin A.S., Kozlov A.B., Pozhar V.E. Optical tweezers with acousto-optic control [in Russian] // Opticheskii Zhurnal. 2023. V. 90. № 11. P. 71–78. http://doi.org/10.17586/1023-5086-2023-90-11-71-78

For citation (Journal of Optical Technology):

A. I. Morozov, A. S. Machikhin, A. B. Kozlov, and V. E. Pozhar, "Acousto-optically controlled optical tweezers," Journal of Optical Technology. 90 (11), 679-683 (2024).  https://doi.org/10.1364/JOT.90.000679

Abstract:

Subject of study. Bragg diffraction of a laser beam by a multi-frequency acoustic wave in crystals to form several beams deflected in specified directions. Aim of study. Development of a method and means for moving a few microparticles simultaneously by laser focused beams (optical particle traps) along arbitrary trajectories. And then development and testing of operating modes for optical tweezers with acousto-optic control, performing simultaneous manipulation of those microobjects and varying the number of traps. Method. Particle trajectories are controlled by setting all the individual trajectories on a screen, which displays the workspace area and the particles to be rearranged in space. The experimental setup is assembled on the basis of a biological inverted microscope. It provides a real-time display of the particles and traps positions. In particular, such modes of operation of optical tweezers with acousto-optic control are being developed that allow one to automatically manipulate several microobjects simultaneously, to vary the number of traps, their strength, and trajectories. Main results. Using microscopic particles of nutritional yeast, the effectiveness of the developed hardware and software is experimentally shown. Simultaneous non-mechanical control of multiple specimen by a two-coordinate acousto-optical deflector is demonstrated. Practical significance. The developed hardware and software tools can be used in biomedicine and materials science for automated, precise and high-performance manipulation of multiple microscopic objects.

Keywords:

optical tweezers, micromanipulation, Bragg diffraction, acousto-optical deflector

Acknowledgements:

the work was carried out within the framework of the State Assignment of the STC UP RAS (project FFNS-2022-0010). The results of the work were obtained using the equipment of the Center for Collective Use of the Scientific and Technological Center for Unique Instrumentation of the Russian Academy of Sciences

OCIS codes: 230.1040, 350.4855

References:
  1. Bustamante C.J., Chemla Y.R., Liu S., et al. Optical tweezers in single-molecule biophysics // Nat. Rev. Methods Primers. 2021. V. 1. P. 29. https://doi.org/10.1038/s43586-021-00021-6
  2. Heller I., Hoekstra T.P., King G.A., et al. Optical tweezers analysis of DNA-protein complexes // Chem. Rev. 2014. V. 114. P. 3087–3119. https://doi.org/10.1021/cr4003006
  3. Fazal F.M., Block S.M. Optical tweezers study life under tension // Nat. Photonics. 2011. V. 5(6). P. 318–321. https://doi.org/10.1038/nphoton.2011.100
  4. Polimeno P., Magazzù A., Iatì M.A., et al. Optical tweezers and their applications // J. Quantitative Spectroscopy and Radiative Transfer. 2018. V. 218. P. 131–150. https://doi.org/10.1016/j.jqsrt.2018.07.013
  5. Hsu T.W., Zhu W., Thiele T., et al. Single-atom trapping in a metasurface-lens optical tweezer // PRX Quantum. 2022. V. 3(3). P. 030316. https://doi.org/10.1103/PRXQuantum.3.030316
  6. Brooks R.V., Spence S., Guttridge A., et al. Preparation of one 87Rb and one 133Cs atom in a single optical tweezer // New J. Phys. 2021. V. 23(6). P. 065002. https://doi.org/10.1088/1367-2630/ac0000
  7. Kaufman A.M., Ni K.K. Quantum science with optical tweezer arrays of ultracold atoms and molecules // Nat. Phys. 2021. V. 17(12). P. 1324–1333. https://doi.org/10.1038/s41567-021-01357-2
  8. Obydennov D., Yushkov K., and Molchanov V. Ring-shaped optical trap based on an acousto-optic tunable spatial filter // Opt. Lett. 2021. V. 46(18). P. 4494–4497. https://doi.org/10.1364/OL.435485
  9. Machikhin A., Pichugina Y., Kozlov A., et al. Acousto-optical deflector for non-mechanical manipulating using optical tweezers // J. Phys.: Conf. Ser. 2020. V. 1461. Р. 012087. https://doi.org/10.1088/1742-6596/1461/1/012087
  10. Магдич Л.Н., Молчанов В.Я. Акустооптические устройства и их применение. М.: Советское радио, 1978. 112 с.

       Magdich L.N., Molchanov V.Ya. Acousto-optic devices and their applications [in Russian]. Moscow: “Sovetskoe Radio” Publ., 1978. 112 p.

  1. Fuigin M. Dispersion of tellurium dioxide refractive indexes. // Acta Optica Sinica. 1986. V. 6(5). P. 446–450.
  2. Voloshinov V.B. Anisotropic light diffraction on ultrasound in a tellurium dioxide single crystal // Ultrasonics. 1993. V. 31(5). P. 333–338.