DOI: 10.17586/1023-5086-2023-90-12-14-23
УДК: 621.373.826
Compact powerful subnanosecond microchip laser based on Nd:YAG/Cr:YAG crystal operating without thermal stabilization system
Full text on elibrary.ru
Publication in Journal of Optical Technology
Yakovin M.D., Yakovin D.V., Gribanov A.V. Compact powerful subnanosecond microchip laser based on Nd:YAG/Cr:YAG crystal operating without thermal stabilization system [In Russian] // Opticheskii Zhurnal. 2023. V. 90. № 12. P. 14–23. http://doi.org/10.17586/1023-5086-2023-90-12-14-23
Subject of study. Laboratory model of a small-sized microchip laser system, which includes an emitter based on an Nd:YAG/Cr:YAG active crystal with passive Q-switching, a pumping system — a multiwave laser diode array consisting of 5 laser diode bars, a lens system for collimation and focusing pump radiation, as well as a power source for laser diodes. The aim of the work is to develop and research a compact, portable microchip laser with high peak power and energy per pulse operating over a wide temperature range. Method. Due to the use of a multiwavelength laser diode array as a pump source, the laser does not require complex thermal stabilization circuits. The fast axis collimation system developed for all laser diode lines ensures efficient and stable performance. Main results. The possibility of using the array of multiwavelength laser diodes as a pump source for the passive Q-switched microchip Nd:YAG laser based on a saturable Cr:YAG absorber is demonstrated. This pumping allows to avoid using thermal stabilization system under typical environmental conditions. The small-sized microchip laser system (the volume is 1 dm3 together with the power supply of pump laser diodes) has been created. At a pulse repetition rate of the laser diode pump array of 20 Hz and a duration of 300 µs, the average output power of the laser is 203 mW at a wavelength of 1064 nm. The energy in the generation pulse is more than 10 mJ, which corresponds to a peak power of 50 MW. The radiation divergence is 3.5 mrad, the beam diameter at a distance of 500 mm from the resonator is about 2 mm. The stability of the average output power of the laser system is better than 3% in the ambient temperature range from 16 to 30 °С without the use of the thermal stabilization system. Practical significance. The compact source of the powerful short pulses has been developed; it can operate over a wide temperature range without the thermal stabilization system, which makes it an ideal choice for portable systems and devices. It can find application in various fields, such as optical location and rangefinding, atmospheric probing, spectroscopy, material processing and non-linear optics.
microchip laser, Nd:YAG laser, passive Q-switching, Cr:YAG, diode pumping, alignment
Acknowledgements:OCIS codes: 140.3530,140.3480, 140.3540, 220.3620.
References:- Zayhowski J.J., Dill C. Diode-pumped passively Q-switched picosecond microchip lasers // Optics Letters. 1994. V. 19. № 18. P. 1427–1429. https://doi.org/10.1364/OL.19.001427
- Krebs D.J., Novo-Gradac A.M., Li S.X., Lindauer S.J., Afzal R.S., Anthony W.Y. Compact, passively Q-switched Nd: YAG laser for the MESSENGER mission to Mercury // Applied Optics. 2005. V. 44. № 9. P. 1715–1718. https://doi.org/10.1364/AO.44.001715
- Kallenbach R., Murphy E., Gramkow B., Rech M., Weidlich K., Leikert T., Henkelmann R., Trefzger B., Metz B., Michaelis H., Lingenauber K., DelTogno S., Behnke T., Thomas N., Piazza D., Seiferlin K. Space-qualified laser system for the BepiColombo Laser Altimeter // Applied Optics. 2013. V. 52. № 36. P. 8732–8746. https://doi.org/10.1364/AO.52.008732
- Krichbaumer W., Herrmann H., Nagel E., Häring R., Streicher J., Werner C., Mehnert A., Halldorsson T., Heinemann S., Peuser P., Schmitt N.P. A diode-pumped Nd: YAG lidar for airborne cloud measurements //Optics & Laser Technology. 1993. V. 25. № 5. P. 283–287. https://doi.org/10.1016/0030-3992(93)90015-8
- Binks D.J., Golding P.S., King T.A. Compact all-solid-state high repetition rate tunable ultraviolet source for airborne atmospheric gas sensing // Journal of Modern Optics. 2000. V. 47. № 11. P. 1899–1912. https://doi.org/10.1080/09500340008232442
- Lopez-Moreno C., Smith B.W., Gornushkin I.B., Omenetto N., Palanco S., Laserna J.J., Winefordner J.D. Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy // Journal of Analytical Atomic Spectrometry. 2005. V. 20. № 6. P. 552–556. https://doi.org/10.1039/B419173K
- Neumann J., Lang T., Huss R., Ernst M., Moalem A., Kolleck C., Kracht D. Development of a pulsed laser system for laser-induced breakdown spectroscopy (LIBS) // International Conference on Space Optics — ICSO 2012. 105642J. 20 November 2017. Proceedings of SPIE. 2017. V. 10564. P. 655–660. https://doi.org/10.1117/12.2309093
- Ancona A., Nodop D., Limpert J., Nolte S., Tünnermann A. Microdrilling of metals with an inexpensive and compact ultra-short-pulse fiber amplified microchip laser // Applied Physics A. 2009. V. 94. P. 19–24. https://doi.org/10.1007/s00339-008-4906-3
- Bhandari R., Taira T. Above 6 MW peak power at 532 nm from passively Q-switched Nd: YAG/Cr4+:YAG microchip laser // Optics Express. 2011. V. 19. № 20. P. 19135–19141. https://doi.org/10.1364/OE.19.019135
- Bhandari R., Taira T., Miyamoto A., Furukawa Y., Tago T. Above 3 MW peak power at 266 nm using Nd: YAG/Cr4+:YAG microchip laser and fluxless-BBO // Optical Materials Express. 2012. V. 2. № 7. P. 907–913. https://doi.org/10.1364/OME.2.000907
- Gao S. Passively Q-switched, intracavity frequency-doubled YVO4/Nd: YVO4/KTP green laser with a GaAs saturable absorber // Quantum Electronics. 2015. V. 45. № 11. P. 1000–1002. https://doi.org/10.1070/QE2015v045n11ABEH015829
- Tsunekane M., Inohara T., Ando A., Kido N., Kanehara K., Taira T. High peak power, passively Q-switched microlaser for ignition of engines // IEEE Journal of Quantum Electronics. 2010. V. 46. № 2. P. 277–284. https://doi.org/10.1109/JQE.2009.2030967
- Kisel V.E., Yasukevich A.S., Kondratyuk N.V., Kuleshov N.V. Diode-pumped passively Q-switched high-repetition-rate Yb microchip laser // Quantum Electronics. 2009. V. 39. № 11. P. 1018–1022. https://doi.org/10.1070/QE2009v039n11ABEH014151
- Dong J., He, Y., Zhou X., Bai S. Highly efficient, versatile, self-Q-switched, high-repetition-rate microchip laser generating Ince–Gaussian modes for optical trapping // Quantum Electronics. 2016. V. 46. № 3. P. 218–222. https://doi.org/10.1070/QEL15826
- Vainshenker A.E., Vilenskiy A.V., Kazakov A.A., Lysoy B.G., Mikhailov L.K., Pashkov V.A. Diode-pumped Q-switched Nd3+: YAG laser operating in a wide temperature range without thermal stabilisation of pump diodes // Quantum Electronics. 2013. V. 43. № 2. P. 114–116. https://doi.org/10.1070/QE2013v043n02ABEH015036
- Zayhowski J.J., Wilson A.L. Pump-induced bleaching of the saturable absorber in short-pulse Nd: YAG/Cr/sup 4+:YAG passively Q-switched microchip lasers // IEEE Journal of Quantum Electronics. 2003. V. 39. № 12. P. 1588–1593. https://doi.org/10.1109/JQE.2003.819535
- Sakai H., Kan H., Taira T. Above 1 MW peak power single-mode high-brightness passively Q-switched Nd3+:YAG microchip laser // Optics Express. 2008. V. 16. № 24. P. 19891–19899. https://doi.org/10.1364/OE.16.019891
- Wang Y., Gong M., Yan P., Huang L., Li D. Stable polarization short pulse passively Q-switched monolithic microchip laser with [110] cut Cr4+:YAG // Laser Physics Letters. 2009. V. 6. № 11. P. 788. https://doi.org/10.1002/lapl.200910079
- Hou D., Yin X., Wang J., Chen S., Zhan Y., Li X., Fan Y., Liu X. High power multiple wavelength diode laser stack for DPSSL application without temperature control // Proceedings of SPIE. 2018. V. 10513. P. 167–178. https://doi.org/10.1117/12.2291169