DOI: 10.17586/1023-5086-2023-90-12-35-45
УДК: 53.082.52; 621.3.084.2
Development of afterpulse effect model of InGaAs/InP single-photon avalanche diodes for applying in quantum key distribution systems
Full text on elibrary.ru
Publication in Journal of Optical Technology
Филяев А.А., Лосев А.В., Заводиленко В.В., Павлов И.Д. Разработка модели эффекта послеимпульса в однофотонных лавинных диодах на InGaAs/InP, предназначенных для применения в системах квантового распределения ключей // Оптический журнал. 2023. Т. 90. № 12. С. 35–45. https://doi.org/10.17586/10235086202390123545
Filyaev A.A., Losev A.V., Zavodilenko V.V., Pavlov I.D. Development of afterpulse effect model of InGaAs/InP singlephoton avalanche diodes for applying in quantum key distribution systems [In Russian] // Opticheskii Zhurnal. 2023. V. 90. № 12. P. 35–45. http://doi.org/10.17586/10235086202390123545
Subject of study. A noise parameter, such as an afterpulse effect, that occurs in indiumgallium arsenide/indium phosphide singlephoton avalanche diodes when operated as part of a singlephoton detector in quantum key distribution systems has been investigated. The aim of study is the analysis of indiumgallium arsenide/indium phosphide singlephoton avalanche diodes afterpulse effect estimation approaches used in the world practice for quantum key distribution systems and the development of measurement technique and model for estimating the afterpulse effect in indiumgallium arsenide/indium phosphide singlephoton avalanche diodes. Method. For the experimental measurement of the afterpulse probability in indiumgallium arsenide/indium phosphide singlephoton avalanche diodes a special stand has been used. All components of this stand are controlled by the software created in LabVIEW. The developed model of afterpulse probability is based on the nonMarkovian character of this effect. Main results. The measurement technique and the probabilistic model for estimating the afterpulse based on the recursive nature of this effect in indiumgallium arsenide/indium phosphide singlephoton avalanche diodes are developed. This makes it possible to estimate the true value of the afterpulse probabilityby the reaction to a single triggering of singlephoton detector with indiumgallium arsenide/indium phosphide singlephoton avalanche diodes in its composition. The analysis of approaches to estimating the afterpulse used in world practice for quantum key distribution systems is performed. The advantages of the developed approach over the standard methods that do not take into account the nonMarkov nature of the effect under consideration are demonstrated. Practical significance. The approach to determining the afterpulse probability of indiumgallium arsenide/indium phosphide singlephoton avalanche diodes in the form of two models (simple and complex) has been developed, which allows to compromise between the accuracy of calculations and their complexity for the application of such devices in quantum key distribution systems.
singlephoton detectors, quantum key distribution system, singlephoton avalanche diodes, afterpulse probability
Acknowledgements:OCIS codes: 270.5565, 230.5160, 250.1345
References:- Yao N., Yao Q., Xie X.P., Liu Y., Xu P., Fang W., Zheng M.Y., Fan J., Zhang Q., Tong L., Pan J.W. Optimizing upconversion singlephoton detectors for quantum key distribution // Optics Express. 2020. V. 28. № 17. P. 25123–25133. https://doi.org/10.1364/OE.397767
- Yuan Z., Plews A., Takahashi R., Doi K., Tam W., Sharpe A.W., Dixon A.R., Lavelle E., Dynes J.F., Murakami A., Kujiraoka M., Lucamarini M., Tanizawa Y., Sato H., Shields A.J. 10Mb/s quantum key distribution // Journal of Lightwave Technology. 2018. V. 36. № 16. P. 3427–3433. https://doi.org/10.1109/JLT.2018.2843136
- Cañas G., Vera N., Cariñe J., González P., Cardenas J., Connolly P.W.R., Przysiezna A., Gómez E.S., Figueroa M., Vallone G., Villoresi P., Ferreira da Silva T., Xavier G.B., Lima G. Highdimensional decoystate quantum key distribution over multicore telecommunication fibers // Physical Review A. 2017. V. 96. № 2. P. 022317. https://doi.org/10.1103/PhysRevA.96.022317
- Zhao L.Y., Wu Q.J., Qiu H.K., Qian J.L., Han Z.F. Practical security of wavelengthmultiplexed decoystate quantum key distribution // Physical Review A. 2021. V. 103. № 2. P. 022429. https://doi.org/10.1103/PhysRevA.103.022429
- Wang F.X., Chen W., Li Y.P., He D.Y., Wang C., Han Y.G., Wang S., Yin Z.Q., Han Z.F. NonMarkovian property of afterpulsing effect in singlephoton avalanche detector // Journal of Lightwave Technology. 2016. V. 34. № 15. P. 3610–3615. https://opg.optica.org/jlt/abstract.cfm?uri=jlt34153610#articleCitations
- Wang C., Wang J., Xu Z., Li J., Wang R., Zhao J., Wei Y. Afterpulsing effects in SPADbased photoncounting communication system // Optics Communications. 2019. V. 443. P. 202–210. https://doi.org/10.1016/j.optcom.2019.03.039
- Bethune D.S., Risk W.P., Pabst G.W. A highperformance integrated singlephoton detector for telecom wavelengths // Journal of modern optics. 2004. V. 51. № 9–10. P. 1359–1368. https://doi.org/10.1080/09500340408235278
- Yuan Z.L., Kardynal B.E., Sharpe A.W., Shields A.J. High speed single photon detection in the near infrared // Applied Physics Letters. 2007. V. 91. № 4. P. 041114. https://doi.org/10.1063/1.2760135
- Liu J., Zhang C., Li Y., Wang Z. 1.2GHz gated singlephoton detector with simple filtering // Optoelectronic Devices and Integration. 2014. V. 9270. P. 23–29. https://doi.org/10.1117/12.2071434
- Chunnilall C.J., Degiovanni I.P., Kück S., Müller I., Sinclair A.G. Metrology of singlephoton sources and detectors: a review // Optical Engineering. 2014. V. 53. № 8. P. 081910. https://doi.org/10.1117/1.OE.53.8.081910
- Liang Y., Chen Y., Huang Z., Bai G., Yu M., Zeng H. Roomtemperature singlephoton detection with 1.5GHz gated InGaAs/InP avalanche photodiode // IEEE Photonics Technology Letters. 2016. V. 29. № 1. P. 142–145. https://doi.org/10.1109/LPT.2016.2630273
- Zhang Y., Zhang X., Shi Y., Ying Z., Wang S. Electrooptic modulator based gate transient suppression for sinewave gated InGaAs/InP single photon avalanche photodiode // Optical Engineering. 2014. V. 53. № 6. P. 067102. https://doi.org/10.1117/1.OE.53.6.067102
- Bouzid A., Han S.W., Lee M.S., Moon S. Singlephoton detector at telecommunication wavelengths using an analog integrator for ultra small avalanche discrimination // Applied Physics Express. 2013. V. 6. № 5. P. 052201. https://doi.org/10.7567/APEX.6.052201
- Korzh B., Lunghi T., Kuzmenko K., Boso G., Zbinden H. Afterpulsing studies of lownoise InGaAs/InP singlephoton negativefeedback avalanche diodes // Journal of Modern Optics. 2015. V. 62. № 14. P. 1151–1157. https://doi.org/10.1080/09500340.2015.1024294
- Itzler M.A., Jiang X., Entwistle M. Power law temporal dependence of InGaAs/InP SPAD afterpulsing // Journal of Modern Optics. 2012. V. 59. № 17. P. 1472–1480. https://doi.org/10.1080/09500340.2012.698659
- Arahira S., Murai H. Effects of afterpulse events on performance of entanglementbased quantum key distribution system // Japanese Journal of Applied Physics. 2016. V. 55. № 3. P. 032801. https://doi.org/10.7567/JJAP.55.032801