ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-12-61-72

УДК: 004.932.2, 53.082.534

Calculation of blood flow parameters in zebrafish larvae using the phase correlation method

For Russian citation (Opticheskii Zhurnal):

Волков М.В., Маргарянц Н.Б., Мялицин Д.И., Потёмкин А.В., Гурылева А.В. Вычисление параметров кровотока личинки zebrafish с применением метода фазовой корреляции // Оптический журнал. 2023. Т. 90. № 12. С. 61–72. http://doi.org/10.17586/1023-5086-2023-90-12-61-72

 

Volkov M.V., Margaryants N.B., Myalitsin D.I., Potemkin A.V., Guryleva A.V. Calculation of blood flow parameters in zebrafish larvae using the phase correlation method [In Russian] // Opticheskii Zhurnal. 2023. V. 90. № 12. P. 61-72. http://doi.org/10.17586/1023-5086-2023-90-12-61-72

For citation (Journal of Optical Technology):
-
Abstract:

Subject of the study. The parameters of the circulatory system of zebrafish model organisms in the larval stage were investigated. Aim of study. Evaluation of blood flow velocity in vessels of model organisms — zebrafish (danio rerio) larvae using phase correlation methods when analyzing the series of digital microscopy images. Methods. Non-invasive methods of digital microscopy are employed in zebrafish research tasks, enabling high-speed registration of a series of blood flow images. The paper explores novel algorithms for processing the registered images providing the calculation of blood flow parameters based on the phase correlation procedure. These algorithms involve the local matching of images with multiple reference frames, the creation of a synthesized vessel map, the determination of the trajectory of blood flow elements within the selected vessel, and the evaluation of blood flow velocity. Main results. A modified algorithm designed to estimate and compensate for local displacements in zebrafish images using multiple reference frames has been developed. The algorithms based on the phase correlation method for calculation the synthesized map of zebrafish larval blood vessels, along with the trajectories and blood flow velocities within these vessels were developed. These algorithms underwent verification through the processing of digital microscopy data from multiple zebrafish specimens. As a result of this verification vessel maps, blood flow trajectories, and local blood flow velocity values for both arterial and venous vessels were obtained. Practical significance. The study introduces new algorithms for digital microscopy data processing to calculate the blood circulation system parameters of model organisms, such as zebrafish. The developed approaches can be used to study blood flow in tasks related to medicines testing or genetic studies.

Keywords:

zebrafish, danio-rerio, digital microscopy, videocapillaroscopy, blood flow velocity, image matching, Fourier transform, phase correlation

Acknowledgements:

the work was carried out with the financial support of the RSF grant 22-49-08012.

OCIS codes: 100.0100, 170.0180, 180.0180

References:
  1. Antinucci P., Hindges R. A crystal-clear zebrafish for in vivo imaging // Scientific Reports. 2016. V. 6. № 1. P. 29490. https://doi.org/10.1038/srep29490
  2. Bowley G., Kugler E., Wilkinson R. et al. Zebrafish as a tractable model of human cardiovascular disease // Br J Pharmacol. 2022. V. 179. № 5. P. 900–917. https://doi.org/10.1111/bph.15473
  3. Benslimane F.M., Zakaria Z.Z., Shurbaji S., Abdelrasool M.K.A., Al-Badr M.A.H.I., Absi E.S.K.Al., Yalcin H.C. Cardiac function and blood flow hemo-dynamics assessment of zebrafish (Danio rerio) using high-speed video mi-croscopy // Micron. 2020. V. 136. P. 102876. https://doi.org/10.1016/j.micron.2020.102876
  4. Bakkers J. Zebrafish as a model to study cardiac development and human cardiac disease // Cardiovascular Research. 2011. V. 91. № 2. P. 279–288. https://doi.org/10.1093/cvr/cvr098
  5. Poon K.L., Brand T. The zebrafish model system in cardiovascular research: A tiny fish with mighty prospects // Global Cardiology Science and Practice. 2013. V. 2013. № 1. P. 4. https://doi.org/10.5339/gcsp.2013.4
  6. Jahr W., Schmid B., Schmied C., Fahrbach F.O., Huisken J. Hyperspectral light sheet microscopy // Nature Communications. 2015. V. 6. P. 1–9. https://doi.org/10.1038/ncomms8990
  7. Andrews N., Ramel M.C., Kumar S., Alexandrov Y., Kelly D.J., Warren S.C., Kerry L., Lockwood N., Frolov A., Frankel P., Bugeon L., Mcginty J., Dallman M.J., French P.M.W. Visualising apoptosis in live zebrafish using fluorescence lifetime imaging with optical projection tomography to map FRET biosensor activity in space and time // Journal of Biophotonics. 2016. V. 9. № 4. P. 414–424. https://doi.org/10.1002/jbio.201500258
  8. Høgset H., Horgan C.C., Armstrong J.P.K., Bergholt M.S., Torraca V., Chen Q., Keane T.J., Bugeon L., Dallman M.J., Mostowy S., Stevens M.M. In vivo biomolecular imaging of zebrafish embryos using confocal Raman spectroscopy // Nature Communications. 2020. V. 11. № 1. P. 1–12. https://doi.org/10.1038/s41467-020-19827-1
  9. LeBert D.C., Squirrell J.M., Huttenlocher A., Eliceiri K.W. Second harmonic generation microscopy in zebrafish // Methods in Cell Biology. 2016. V. 133. P. 55–68. https://doi.org/10.1016/bs.mcb.2016.01.005
  10. Santoso F., Sampurna B.P., Lai Y.H., Liang S.T., Hao E., Chen J.R., Hsiao C. Der. Development of a simple image j-based method for dynamic blood flow tracking in Zebrafish embryos and its application in drug toxicity evaluation // Inventions. 2019. V. 4. № 65. P. 1–14. https://doi.org/10.3390/inventions4040065
  11. Kotslova A.A., Davydenko V.V., Vlasov T.D. Local changes in assessing the state of microcirculation in neuroischemic and neuropathic forms of diabetic foot syndrome // Laser Medicine. 2016. V. 20(2). P. 5–12.
  12. Dremin V., Kozlov I., Volkov M., Margaryants N., Potemkin A., Zherebtsov E., Dunaev A., Gurov I. Dynamic evaluation of blood flow microcirculation by combined use of the laser Doppler flowmetry and high-speed videocapillaros-copy methods // Journal of Biophotonics. 2019. V. 12(6). P. e201800317. https://doi.org/10.1002/jbio.201800317
  13. Sokolova I.B., Gorshkova O.P. Assessment of the effect of arterial hypertension on microcirculation in the cerebral cortex of rats using laser Doppler flowmetry // Russian Journal of Physiology. 2018. V. 104. № 1. P. 103–113.
  14. Sdobnov A.Yu., Kalchenko V.V., Bykov A.V., Popov A.P., Molody G., Meglinsky I.V. Visualization of blood flow using laser speckle-contrast measurements under non-ergodic conditions // Optics and Spectroscopy. 2020. V. 128. № 6. P. 773–782. https://doi.org/10.21883/OS.2020.06.49410.35-20
  15. Potapova E.V., Seryogina E.S., Dremin V.V., Stavtsev D.D., Kozlov I.O., Zherebtsov E.A., Mamoshin A.V., Ivanov Yu.V., Dunaev A.V. Laser speckle contrast imaging of blood microcirculation in pancreatic tissues during laparoscopic interventions // Quantum Electronics. 2020. V. 50(1). P. 33–40. https://doi.org/10.1070/qel17207
  16. Gurov I., Volkov M., Margaryants N., Potemkin A. Method of combining locally changing images in videopillaroscopy // Journal of Optical Technology. 2019. V. 86. P. 774–780. https://doi.org/10.1364/JOT.86.000774
  17. Volkov M.V., Margaryants N.B., Potemkin A.V., Machikhin A.S., Khokhlov D.D., Batshev V.I., Danilycheva I.V., Danilychev M.V. Blood vessel visualiza-tion method in human skin based on video recording of blood flow using a laparoscope // Journal of Communications Technology and Electronics. 2020. V. 65. № 7. P. 806–814. https://doi.org/10.1134/S1064226920070141
  18. Volkov M., Machikhin A., Bukova V., Khokhlov D., Burlakov A., Krylov V. Optical transparency and label-free vessel imaging of zebrafish larvae in shortwave infrared range as a tool for prolonged studying of cardiovascular system development // Scientific Reports. 2022. V. 12. № 1–10. P. 20884. https://doi.org/10.1038/s41598-022-25386-w
  19. Srinivasa Reddy B., Chatterji B.N. An FFT-based technique for translation, rotation, and scale-invariant image registration // IEEE Transactions on Image Processing. 1996. V. 5. № 8. P. 1266–1271. https://doi.org/10.1109/83.506761
  20. Karimov K.A., Volkov M.V. The phase correlation algorithm for stabilization of capillary blood flow video frames // SPIE. 2015. V. 9528. P. 952810. https://doi.org/10.1117/12.2184617
  21. Pavelyeva E.A. Image processing and analysis based on the use of phase information // Computer Optics. 2018. V. 42. № 6. P. 1022–1034. https://doi.org/10.18287/2412-6179-2018-42-6-1022-1034