DOI: 10.17586/1023-5086-2023-90-12-61-72
УДК: 004.932.2, 53.082.534
Calculation of blood flow parameters in zebrafish larvae using the phase correlation method
Full text on elibrary.ru
Publication in Journal of Optical Technology
Волков М.В., Маргарянц Н.Б., Мялицин Д.И., Потёмкин А.В., Гурылева А.В. Вычисление параметров кровотока личинки zebrafish с применением метода фазовой корреляции // Оптический журнал. 2023. Т. 90. № 12. С. 61–72. http://doi.org/10.17586/1023-5086-2023-90-12-61-72
Volkov M.V., Margaryants N.B., Myalitsin D.I., Potemkin A.V., Guryleva A.V. Calculation of blood flow parameters in zebrafish larvae using the phase correlation method [In Russian] // Opticheskii Zhurnal. 2023. V. 90. № 12. P. 61-72. http://doi.org/10.17586/1023-5086-2023-90-12-61-72
Subject of the study. The parameters of the circulatory system of zebrafish model organisms in the larval stage were investigated. Aim of study. Evaluation of blood flow velocity in vessels of model organisms — zebrafish (danio rerio) larvae using phase correlation methods when analyzing the series of digital microscopy images. Methods. Non-invasive methods of digital microscopy are employed in zebrafish research tasks, enabling high-speed registration of a series of blood flow images. The paper explores novel algorithms for processing the registered images providing the calculation of blood flow parameters based on the phase correlation procedure. These algorithms involve the local matching of images with multiple reference frames, the creation of a synthesized vessel map, the determination of the trajectory of blood flow elements within the selected vessel, and the evaluation of blood flow velocity. Main results. A modified algorithm designed to estimate and compensate for local displacements in zebrafish images using multiple reference frames has been developed. The algorithms based on the phase correlation method for calculation the synthesized map of zebrafish larval blood vessels, along with the trajectories and blood flow velocities within these vessels were developed. These algorithms underwent verification through the processing of digital microscopy data from multiple zebrafish specimens. As a result of this verification vessel maps, blood flow trajectories, and local blood flow velocity values for both arterial and venous vessels were obtained. Practical significance. The study introduces new algorithms for digital microscopy data processing to calculate the blood circulation system parameters of model organisms, such as zebrafish. The developed approaches can be used to study blood flow in tasks related to medicines testing or genetic studies.
zebrafish, danio-rerio, digital microscopy, videocapillaroscopy, blood flow velocity, image matching, Fourier transform, phase correlation
Acknowledgements:the work was carried out with the financial support of the RSF grant 22-49-08012.
OCIS codes: 100.0100, 170.0180, 180.0180
References:- Antinucci P., Hindges R. A crystal-clear zebrafish for in vivo imaging // Scientific Reports. 2016. V. 6. № 1. P. 29490. https://doi.org/10.1038/srep29490
- Bowley G., Kugler E., Wilkinson R. et al. Zebrafish as a tractable model of human cardiovascular disease // Br J Pharmacol. 2022. V. 179. № 5. P. 900–917. https://doi.org/10.1111/bph.15473
- Benslimane F.M., Zakaria Z.Z., Shurbaji S., Abdelrasool M.K.A., Al-Badr M.A.H.I., Absi E.S.K.Al., Yalcin H.C. Cardiac function and blood flow hemo-dynamics assessment of zebrafish (Danio rerio) using high-speed video mi-croscopy // Micron. 2020. V. 136. P. 102876. https://doi.org/10.1016/j.micron.2020.102876
- Bakkers J. Zebrafish as a model to study cardiac development and human cardiac disease // Cardiovascular Research. 2011. V. 91. № 2. P. 279–288. https://doi.org/10.1093/cvr/cvr098
- Poon K.L., Brand T. The zebrafish model system in cardiovascular research: A tiny fish with mighty prospects // Global Cardiology Science and Practice. 2013. V. 2013. № 1. P. 4. https://doi.org/10.5339/gcsp.2013.4
- Jahr W., Schmid B., Schmied C., Fahrbach F.O., Huisken J. Hyperspectral light sheet microscopy // Nature Communications. 2015. V. 6. P. 1–9. https://doi.org/10.1038/ncomms8990
- Andrews N., Ramel M.C., Kumar S., Alexandrov Y., Kelly D.J., Warren S.C., Kerry L., Lockwood N., Frolov A., Frankel P., Bugeon L., Mcginty J., Dallman M.J., French P.M.W. Visualising apoptosis in live zebrafish using fluorescence lifetime imaging with optical projection tomography to map FRET biosensor activity in space and time // Journal of Biophotonics. 2016. V. 9. № 4. P. 414–424. https://doi.org/10.1002/jbio.201500258
- Høgset H., Horgan C.C., Armstrong J.P.K., Bergholt M.S., Torraca V., Chen Q., Keane T.J., Bugeon L., Dallman M.J., Mostowy S., Stevens M.M. In vivo biomolecular imaging of zebrafish embryos using confocal Raman spectroscopy // Nature Communications. 2020. V. 11. № 1. P. 1–12. https://doi.org/10.1038/s41467-020-19827-1
- LeBert D.C., Squirrell J.M., Huttenlocher A., Eliceiri K.W. Second harmonic generation microscopy in zebrafish // Methods in Cell Biology. 2016. V. 133. P. 55–68. https://doi.org/10.1016/bs.mcb.2016.01.005
- Santoso F., Sampurna B.P., Lai Y.H., Liang S.T., Hao E., Chen J.R., Hsiao C. Der. Development of a simple image j-based method for dynamic blood flow tracking in Zebrafish embryos and its application in drug toxicity evaluation // Inventions. 2019. V. 4. № 65. P. 1–14. https://doi.org/10.3390/inventions4040065
- Kotslova A.A., Davydenko V.V., Vlasov T.D. Local changes in assessing the state of microcirculation in neuroischemic and neuropathic forms of diabetic foot syndrome // Laser Medicine. 2016. V. 20(2). P. 5–12.
- Dremin V., Kozlov I., Volkov M., Margaryants N., Potemkin A., Zherebtsov E., Dunaev A., Gurov I. Dynamic evaluation of blood flow microcirculation by combined use of the laser Doppler flowmetry and high-speed videocapillaros-copy methods // Journal of Biophotonics. 2019. V. 12(6). P. e201800317. https://doi.org/10.1002/jbio.201800317
- Sokolova I.B., Gorshkova O.P. Assessment of the effect of arterial hypertension on microcirculation in the cerebral cortex of rats using laser Doppler flowmetry // Russian Journal of Physiology. 2018. V. 104. № 1. P. 103–113.
- Sdobnov A.Yu., Kalchenko V.V., Bykov A.V., Popov A.P., Molody G., Meglinsky I.V. Visualization of blood flow using laser speckle-contrast measurements under non-ergodic conditions // Optics and Spectroscopy. 2020. V. 128. № 6. P. 773–782. https://doi.org/10.21883/OS.2020.06.49410.35-20
- Potapova E.V., Seryogina E.S., Dremin V.V., Stavtsev D.D., Kozlov I.O., Zherebtsov E.A., Mamoshin A.V., Ivanov Yu.V., Dunaev A.V. Laser speckle contrast imaging of blood microcirculation in pancreatic tissues during laparoscopic interventions // Quantum Electronics. 2020. V. 50(1). P. 33–40. https://doi.org/10.1070/qel17207
- Gurov I., Volkov M., Margaryants N., Potemkin A. Method of combining locally changing images in videopillaroscopy // Journal of Optical Technology. 2019. V. 86. P. 774–780. https://doi.org/10.1364/JOT.86.000774
- Volkov M.V., Margaryants N.B., Potemkin A.V., Machikhin A.S., Khokhlov D.D., Batshev V.I., Danilycheva I.V., Danilychev M.V. Blood vessel visualiza-tion method in human skin based on video recording of blood flow using a laparoscope // Journal of Communications Technology and Electronics. 2020. V. 65. № 7. P. 806–814. https://doi.org/10.1134/S1064226920070141
- Volkov M., Machikhin A., Bukova V., Khokhlov D., Burlakov A., Krylov V. Optical transparency and label-free vessel imaging of zebrafish larvae in shortwave infrared range as a tool for prolonged studying of cardiovascular system development // Scientific Reports. 2022. V. 12. № 1–10. P. 20884. https://doi.org/10.1038/s41598-022-25386-w
- Srinivasa Reddy B., Chatterji B.N. An FFT-based technique for translation, rotation, and scale-invariant image registration // IEEE Transactions on Image Processing. 1996. V. 5. № 8. P. 1266–1271. https://doi.org/10.1109/83.506761
- Karimov K.A., Volkov M.V. The phase correlation algorithm for stabilization of capillary blood flow video frames // SPIE. 2015. V. 9528. P. 952810. https://doi.org/10.1117/12.2184617
- Pavelyeva E.A. Image processing and analysis based on the use of phase information // Computer Optics. 2018. V. 42. № 6. P. 1022–1034. https://doi.org/10.18287/2412-6179-2018-42-6-1022-1034