DOI: 10.17586/1023-5086-2023-90-12-85-95
УДК: 53.087.92 + 681.7.064.64
Efficiency of using the compensation method for synthesizing precision angle-measuring structures
Full text on elibrary.ru
Publication in Journal of Optical Technology
Кирьянов А.В. Эффективность использования метода компенсации для синтеза прецизионных углоизмерительных структур // Оптический журнал. 2023. Т. 90. № 12. С. 85–95. http://doi.org/10.17586/1023-5086-2023-90-12-85-95
Kiryanov A.V. Efficiency of using the compensation method for synthesizing precision angle-measuring structures [in Russian] // Opticheskii Zhurnal. 2023. V. 90. № 12. P. 85–95. http://doi.org/10.17586/1023-5086-2023-90-12-85-95
Subject of study. The use of compensation method of the instrumental component of the conversion error in the formation of optical angle-measuring structures. Aim of study. Increasing the accuracy of formation of optical angle-measuring structures (bar limbs, circular scales, rasters, code disks) using polar coordinate laser pattern generators. Main results. The results of modernization of a high-precision mechatronic circular motion module included in the CLWS-300 angular coordinate system are presented. It is shown that when using the method of compensation of the instrumental component of the transformation error, the accuracy of the structure synthesis can reach the value of ±1.0" at a diameter of 70 mm. The use of the compensation method in the circular motion mechatronic module allows to simplify its design and increase the accuracy of the formed structures in an economically more attractive way. Practical significance. The increase of metrological characteristics of goniometric measuring devices, in the reference systems of which the angular measuring structures made up with the help of laser image generators are used.
optical angle-measuring structure, angular error, angular encoder, laser pattern generator, angle-measuring machine, compensation method
Acknowledgements:the research was supported by the Ministry of Science and Higher Education of the Russian Federation (state registration No. 121042900050-6)
OCIS codes: 230.4000, 280.4788, 230.0250, 230.0040
References:- Zhang R., Bao W., Zhao H., Jia H., Liandong L. Self-calibration method of precision shafting angle measurement error based on multiple reading heads // Tenth International Symposium on Precision Engineering Measurements and Instrumentation. Proc. SPIE. 2019. V. 11053. P. 1105328. https://doi.org/10.1117/12.2511826
- Jiao Y., Dong Z., Ding Y., Liu P. Optimal arrangements of scanning heads for self-calibration of angle encoders // Measurement Science and Technology. 2018. V. 28. P. 105013 (11pp). https://doi.org/10.1088/1361-6501/aa8545
- Ishii N., Taniguchi K., Yamazaki K. Aoyama H. Development of super-accurate нц angular encoder system with multi-detecting heads using VEDA method // Journal of Advanced Mechanical Design, Systems, and Manufacturing. 2018. V. 12. № 5. P. 1–13. https://doi.org/10.1299/jamdsm.2018jamdsm0106
- Nowak W., Carolan K., Furst M., Lacayo O. Rotary encoder error compensation system and method for photoreceptor surface motion sensing and control // US Patent 6 304 825 B1. 1999. Publ. Oct. 2001.
- Kiryanov A.V., Kiryanov V.P. Application of coherent lattice filters in goniometry // Optoelectronics, Instrumentation and Data Processing. 2021. V. 57. № 6. P. 601–610. https://doi.org/10.3103/S8756699021060066
- Ionak V.F. Kinematic control devices. M.: Mechanical engineering, 1981. P. 128.
- Masuda T., Watanabe T., Beeks K. et al. Absolute X-ray energy measurement using a high-accuracy angle encoder // Journal of synchrotron radiation. 2021. V. 28. № 1. P. 111–119. https://doi.org/10.1107/S1600577520014526
- Hsieh T.-H., Watanabe T., Hsu P-E. Calibration of rotary encoders using a shift-angle method // Applied Sciences. 2022. V. 12. № 10. P. 5008. https://doi.org/10.3390/app12105008
- Watanabe T., Fujimoto H., Nakayama K., Masuda T., Kajitani M. Automatic high-precision calibration system for angle encoder // SPIE Proceedings. 2001. V. 4401. Р. 267. https://doi.org/10.1117/12.445630
- Watanabe T., Fujimoto H., Masuda T. Self-calibratable rotary encoder // Journal of Physics: Conference Series. 2005. V. 13. № 13. P. 240–245. https://doi.org/10.1088/1742-6596/13/1/056
- Watanabe T., Kon M., Nabeshima N., Taniguchi K. An angle encoder for super-high resolution and super-high accuracy using SelfA // Measurement Science and Technology. 2014. V. 25. № 6. P. 065002. https://doi.org/10.1088/0957-0233/25/6/065002
- Probst R., Wittekopf R., Krause M., Dangschat H., Ernst A. The new PTB angle comparator // Measurement Science and Technology. 1998. V. 9. № 7. P. 1059–1066. https://doi.org/10.1088/0957-0233/9/7/009
- Geckeler R., Link A., Krause M., Elster C. Capabilities and limitations of the self-calibration of angle encoders // Measurement Science and Technology. 2014. V. 25. Р. 1–10. https://doi.org/10.1088/0957-0233/25/5/055003
- Electronic resource URL: https://www.heidenhain.com/fileadmin/pdf/en/01_Products/Prospekte/PR_Angle_Encoders_with_Integral_Bearing_ID591109_en.pdf, August 2022 (Dr. Johannes Heidenhain GmbH. Angle encoders with integral bearing)
- Kiryanov V.P., Kiryanov A.V., Kruchinin D.Yu., Yakovlev O.B. Analysis of modern technologies for synthesizing goniometric structures for high-accuracy angle measurements (Analytical review) // Journal of Optical Technology. 2007. V. 74. № 12. P. 823–830. https://doi.org/10.1364/JOT.74.000823
- Electronic resource URL: https://www.hpmemoryproject.org/an/pdf/an_243-7.pdf (Bearing runout measurements. Application note 243 — 7. Agilent technologies (USA). 2000).
- Poleshchuk A.G., Churin E.G., Koronkevich V.P., Korolkov V.P., Kharissov A.A., Cherkasin V.V., Kiryanov V.P., Kiryanov A.V., Kokarev S.A., Verhoglyad A.G. Polar coordinate laser pattern for fabrication of diffractive optical elements with arbitrary structure // Applied Optics. 1999. V. 38. № 8. P. 1295–1301. https://doi.org/10.1364/AO.38.001295
- Abramov Yu.F., Kiryanov V.P., Kiryanov A.V., Kokarev S.A., Kruchinin D.Yu., Yakovlev O.B. Modernizing the optical divider production of the Ural Optomechanical Factory on the basis of up-to-date laser-computer and photo-lithographic technologies // Journal of Optical Technology. 2006. V. 73. № 8. P. 544–547. https://doi.org/10.1364/JOT.73.000544
- Pavlov P.A. Aspects of the cross-calibration method in laser goniometry // Measurement Techniques. 2015. V. 58. № 9. P. 970–974. https://doi.org/10.1007/s11018-015-0827-7
- Portman V., Peschansky B. Phase-statistical method and device for high precise and high-efficiency angular measurements // Precision Engineering. 2001. V. 25. № 4. P. 309–315. https://doi.org/10.1016/S0141-6359(01)00084-8
- Petrov V.V., Mitrofanov C.C. Methods and means of certification of optical limbs and code disks // Optical and mechanical industry. 1982. № 3. P. 52–58.
- Kiryanov V.P., Kiryanov A.V., Kokarev C.A., Nikitin V.G., Bartik S.A., Frizin S.E., Kruchinin D.Yu., Yakovlev O.B. Development of technique for the determination of metrological parameters of technological system CLWS-300/C for synthesize of high precision angular measuring structures // Proceeding of 10th International Symposium IMEKO. St.-Petersburg. June 30 — July 2. 2004. V. 2. P. 316–320.
- Kiryanov V.P., Kiryanov A.V., Klistorin I.F. Experimental evaluation of the accuracy class of a precision angle converter of an embedded type // Sensor and system. 2009. № 1. P. 11–14.
- Kiryanov A.V., Zotov A.A., Karakotskii A.G., Kiryanov V.P., Petukhov A.D., Chukanov V.V. Online monitoring of optical precision goniometric structures // Journal of Optical Technology. 2019. V. 86. № 9. P. 579–581. https://doi.org/10.1364/JOT.86.000579
- Kiryanov A.V., Kiryanov V.P. Improving synthesis accuracy of topology elements in laser pattern generators with circular scanning mode // Lecture Notes in Mechanical Engineering. 2020. P. 497–506. https://doi.org/10.1007/978-3-030-22041-9_53
- Zhang Chun Ping. Research on the accuracy of precision couplings in production // PhD thesis. Saint-Petersburg: ITMO, 1998. 145 p.