ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-02-46-58

УДК: 681.786.2

Analytical model of a laser rangefinder for measuring distances to objects with poorly predicted motion dynamics

For Russian citation (Opticheskii Zhurnal):
Меснянкин Е.П., Павлов Н.И., Потапов С.Л., Потапова Н.И. Аналитическая модель лазерного дальномера для измерения расстояний до объектов с плохо прогнозируемой динамикой движения // Оптический журнал. 2023. Т. 90. № 2. С. 46–58. http://doi.org/ 10.17586/1023-5086-2023-90-02-46-58   Mesnjankin N.I., Pavlov E.P., Potapov S.L., Potapova N.I. Analytical model of a laser rangefinder for measuring distances to objects with poorly predicted motion dynamics [in Russian] // Opticheskii Zhurnal. 2023. V. 90. № 2. P. 46–58. http://doi.org/ 10.17586/1023-5086-2023-90-02-46-58
For citation (Journal of Optical Technology):

E. P. Mesnjankin, N. I. Pavlov, S. L. Potapov, and N. I. Potapova, "Analytical model of a laser rangefinder for measuring distances to objects with poorly predictable motion dynamics," Journal of Optical Technology. 90(2), 81-87 (2023). https://doi.org/10.1364/JOT.90.000081

Abstract:

Subject of study. A pulsed laser rangefinder for measuring distances to distant small-sized objects, the movement of which is characterized by poorly predicted space-time evolutions. Purpose of work. Development of a computational and analytical model of a pulsed laser rangefinder which enables the probabilistic nature of laser pulses hitting the location object to be taken into account. Main result. An analytical model of a rangefinder that satisfies the criterion of the required probability of at least one laser pulse hitting the location object during the time allotted for a single range measurement. Based on the expressions obtained, calculations of the half-width of the directivity pattern and the energy of the probing laser radiation are performed depending on the root-mean-square error of pointing the directivity pattern axis and the number of laser pulses necessary for radiation to hit the location object with at least one pulse with a given probability. It is shown that with the distribution of the energy density in the beam described by the Airy distribution in the far zone, there is an optimal value of the emitter aperture diameter at which the emitter energy is minimal. Practical relevance. The results of the study develop and complement the existing models and methods for calculating the characteristics of a pulsed laser rangefinder.

Keywords:

pulsed laser rangefinder, moving small-sized location object, range of action (measuring), guidance error, probability of probing radiation hitting the object, pulse energy, pulse repetition frequency, width of a probing radiation directivity pattern

OCIS codes: 040.0040, 120.0120, 140.0140, 280.0280, 280.3400

References:

1.    Lebed'ko E.G. Systems of pulsed optical location. St. Petersburg: Publishing house "Lan”, 2014. 368 p.

2.   Basov N.G., Kokurin Yu.L. Laser location of the Moon. Moscow: Science and humanity, 1986. P. 262–267.

3.   Vedeshin L.A., Ipatov A.V. The first space experiments on laser location of the Moon (To the 50th anniversary of "Lunokhod-1" landing on the Moon) // Proc. of the Institute of Applied Astronomy of the Russian Academy of Sciences. 2020. Is. 53. P. 30–37. http://doi.org/ 10.32876/ApplAstron.53.30-37

4.   Denishchik Yu.S., Dryuchenko A.M., Nagai I.V. Laser location of satellites // “Orion" State Interuniversity Center. Alchevsk. Ukraine. 2002. V. 3. № 2. P. 58–69.

5.   Baryshnikov N.V., Karasik V.E., Stepanov R.O. Study of the reflective characteristics of tetrahedral retroreflectors in the IR range // Bulletin of the Bauman Moscow State Technical University. "Instrumentation" series. 2010. P. 3–16.

6.   Starovoitov Ye.I., Savchuk D.V. Study and optimization of the use of corner reflectors for the location of space objects // Space Equipment and Technologies. 2013. № 1. P. 39–43.

7.    Korolev B.V., Kochergin P.P. The use of an instrumentation complex of a space optical communication line for solving problems of high-precision autonomous navigation and orientation of the spacecraft // The Second All-Russian Scientific and Technical Conference "Modern problems of orientation and navigation of spacecraft" / Ed. by Avanesov G.A. Russia, Tarusa. September 13–16, 2010. Collected papers. Moscow: ICI RAS, 2011. P. 129–140.

8.   Garnov S.V., Moiseeva A.V., Nosatenko P.Ya., Fomin V.N., Tserevitinov A.B. Evaluation of the characteristics of a promising orbital laser locator for monitoring space debris // Proc. of the A.M. Prokhorov Institute of General Physics. 2014. V. 70. P. 26–39.

9.   Zhivitsky I.V. Adaptive tracking of aerospace objects in ground-based laser locators with radiated field control // Abstract of thesis. St. Petersburg: St. Petersburg State University of Aerospace Instrumentation, 2007. 21 p.

10. Baryshnikov N.V., Karachunsky V.V., Svigach O.A. Modern methods of designing auto-adjusting systems for high-precision optoelectronic devices // Vestnik MSTU. Instrument Engineering. Special issue "Modern problems of optical equipment". 2011. P. 128–142.

11.  Balashov I.F. Energy estimation of pulsed laser rangefinders. Manual on the methodology of engineering calculations. St. Petersburg: GITMO(TU), 1999. 35 p.

12.  Kozintsev V.I., Belov M.L., Orlov V.M. et al. Fundamentals of pulsed laser location / Ed. by V.N. Rozhdestven. Moscow: Publishing House of Bauman Moscow State Technical University, 2006. 512 p.

13.  Savchuk D.V., Starovoitov E.I. Characteristics of onboard laser location systems and angle reflectors for increasing the measurement range up to 2000 km at spacecraft rendezvous // Space Equipment and Technologies. 2014. V. 4(7). P. 47–53.

14.  Balashov I.F., Nazarov V.N. The choice of parameters of laser rangefinders with regard to the error of aiming at the target // Scientific and Technical Bulletin of Information Technologies, Mechanics and Optics. 2002. V. 21. № 5. P. 19–21.

15.  Baryshnikov N.V. Development and research of devices for parallel transfer of radiation beam for systems of auto-adjusting of channels of laser location stations // Measuring Equipment. 2011. № 4. P. 65–70.

16.  Kolenchikov K.K., Malinov V.A., Pavlov N.I., Popikov V.S., Potapova N.I., Charukhchev A.V. Semi-natural simulation of the angular matching of the axes of the working and marker laser beams in a high-precision laser ranging system // Journal of Optical Technology. 2022. V. 89. № 7. P. 400–408.

17.  Golovkov V.A., Potapova N.I., Rudenko P.N., Stradov B.G. Receiving system of a pulsed laser rangefinder // Journal of Optical Technology. 2020. V. 87. № 11. P. 688–692. http://doi.org/ 10.1364/JOT.87.000688

18. Golovkov V.A., Potapova N.I., Rudenko P.N., Stradov B.G., Telyatnikov S.V. Receiving unit of a precision pulsed laser rangefinder // Journal of the Russian Universities. Radioelectronics. 2020. V. 23. № 21. P. 73–81. http://doi.org/ 10.32603/1993-8985-2020-23-2-73-81

19.  Bel'chenko A.G., Golovkov V.A., Ivanov K.A., Liber V.I., Mesnyankin E.P., Osipov V.M., Potapov S.L., Potapova N.I. Analysis of the possibility of creating an aviation-based laser rangefinder using numerical modeling // Collection of abstracts of the VI Scientific and Technical Conference "Mathematical modeling, engineering calculations and software for solving problems of aerospace defense". Moscow. 2021. Scientific and Educational Center of Aerospace Defense "Almaz — Antey" named after Academician V.P. Efremov. 54 p.

20. Osipov V.M. Simulation of atmospheric infrared background radiation in Earth limb observations // International Symposium «Atmospheric Radiation and Dynamic» (ISARD–2015), 2015. Saint-Petersburg State University. P. 137–138.

21.  Osipov V.M., Borisova N.F., Lovchiy I.L. Aerosol attenuation and backscattering of radiation in the spectral region of 1,064 µm on high-altitude paths // Journal of Optical Technology. 2019. V. 86. № 7. P. 394–400. http://doi.org/ 10.1364/JOT.86.000394

22. Korostelev A.A., Klyuev N.F, Melnikov Y.A. et al. Theoretical foundations of radiolocation / Ed. by Dulevich V.E. Мoscow.: Soviet Radio, 1978. 608 p.

23. Study of the photomultiplier. Methodological guide to the task of a special astronomical workshop. Compiled by Potanin S.A. Мoscow: Lomonosov Moscow State University, 2019. 9 p.

24. Born M., Wolf E. Basics of optics. Мoscow: Nauka, 1973. 719 p. 25.      Ermakov B.A. Optoelectronic devices with lasers. Leningrad: S.I. Vavilov GOI, 1982. 200 p.