ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-03-16-25

УДК: 535.42

Formation and properties of volume and relief holographic gratings in photopolymer materials

For Russian citation (Opticheskii Zhurnal):

Ворзобова Н.Д., Соколов П.П. Формирование и свойства объемных и рельефных голографических решеток в фотополимерных материалах // Оптический журнал. 2022. Т. 90. № 3. С. 16–25. http://doi.org/10.17586/1023-5086-2023-90-03-16-25

 

Vorzobova N.D., Sokolov P.P. Formation and properties of volume and relief holographic gratings in photopolymer materials [in Russian] // Opticheskii Zhurnal. 2023. V. 90. № 3. P. 16–25. http://doi.org/10.17586/1023-5086-2023-90-03-16-25

For citation (Journal of Optical Technology):

N. D. Vorzobova and P. P. Sokolov, "Formation and properties of volume and relief holographic gratings in photopolymer materials," Journal of Optical Technology. 90(3), 114-118 (2023). https://doi.org/10.1364/JOT.90.000114

Abstract:

Subject of study. Formation conditions, diffraction, and selective properties of various types holographic gratings in photopolymer materials. Aim of study. The diffraction and selective properties investigation of one­dimensional non­slanted and slanted gratings, relief gratings, hybrid structures and two­dimensional gratings in various photopolymer materials in radiation incidence angles the wide range in three­dimensional space and determination of the conditions for expanding the angular range in which high diffraction properties are achieved. Methodology. The study of the transmission gratings diffraction efficiency and angular selectivity, in contrast to the traditional technique, was carried out with the incidence of radiation in a wide angular range in different planes with a change in the orientation of the grating. Main results. The conditions for obtaining effective transmission volume gratings in advanced photopolymer materials and their properties are determined. It is shown that when the radiation is incident in the Bragg plane, the maximum diffraction efficiency is achieved in the angles range up to 80° with the full width at half maximum of the angular selectivity contour up to 120°. There are directions of radiation passage through the grating (oblique transmission), which differ from the traditional Bragg direction, at which the maximum diffraction efficiency is achieved. The maximum diffraction efficiency is achieved at large angles of incidence, about 70°. The conditions for the formation of effective hybrid structures combining the properties of a volume and relief grating are determined. It is shown that the range of radiation incidence angles is extended due to the contribution of the relief component of the hybrid structure. The implementation possibility of effective relief gratings in a previously unexplored serial photopolymer material is leted us. The conditions for obtaining effective two­dimensional gratings with the possibility of a smooth change in the intensities in diffracted beams when the element is rotated are determined. Practical significance. It is shown that the angular range expansion can be achieved by varying the characteristics and orientation of the gratings, which eliminates the need for stacked elements. The holographic gratings established properties can be used to solve problems for solar energy, diffractive optics, and security printing technologies.

 

Acknowledgment: this work was supported financially by ITMO University, grant № 621317. The authors are grateful to ITMO University staff B.A. Nasedkin for providing the laser (375 nm) and I.D. Skurlov for measuring the grating samples optical density.

Keywords:

volume holographic grating, slanted and non­slanted gratings, one­dimensional and two­dimensional gratings, hybrid structure, relief grating, diffraction efficiency, angular selectivity, photopolymer material

OCIS codes: 090.1970, 090.2890, 090.7330

References:
  1. Rogers B., Mikulchyk T., Oubaha M., Cody D., Martin S., Naydenova I. Improving the holographic recording characteristics of a water­resistant photosensitive Sol–Gel for use in volume holographic optical elements // Photonics. 2022. V. 9. P. 636. https://doi.org/10.3390/photonics9090636
  2. Ferrara M.A., Borbone F., Coppola G. Holographic optical lenses recorded on a glassy matrix­based photopolymer for solar concentrators // Photonics. 2021. V. 8. P. 585. https://doi.org/10.3390/photonics8120585
  3. Neipp C., Francés J., Martínez F.J., Fernández R., Alvarez M.L., Bleda S., Ortuño M., Gallego S. Optimization of photopolymer materials for the fabrication of a holographic waveguide // Polymers. 2017. V. 9. P. 395. https://doi.org/10.3390/polym9090395
  4. Bruder F.­K., Fäcke T., Rölle T. The chemistry and physics of Bayfol®HX film holographic polymers // Polymers. 2017. V. 9. P. 472. https://doi.org/10.3390/polym9100472
  5. Hui­Ying W., Chang­Won S., Ki­Chul K., Kwon­Yeon L., Nam K. Time­scheduled exposure method for full­color high diffraction efficiency and uniformity of a photopolymer // Optics and Laser Technol. 2022. V. 156. P. 108555. https://doi.org/10.1016/j.optlastec.2022.108555
  6. Ferrara M., Striano V., Coppola G. Volume holographic optical elements as solar concentrators: Аn overview // Appl. Sci. 2019. V. 9. P. 193. https://doi.org/10.3390/app9010193
  7. Akbari H., Naydenova I., Ahmed H., McCormack S., Martin S. Development and testing of low spatial frequency holographic concentrator elements for collection of solar energy // Solar Energy. 2017. V. 155. P. 103–109. https://doi.org/10.1016/j.solener.2017.04.067
  8. Marin­Saez J., Atencia J., Chemisana D., Collados M.V. Full modeling and experimental validation of cylindrical holographic lenses recorded in Bayfol HX photopolymer and partly operating in the transition regime for solar concentration // Opt. Exp. 2018. V. 26. P. 398–412. https://doi.org/10.1364/oe.26.00a398
  9. Lee J.­H., Wu H.­Y., Piao M.­L., Kim N. Holographic solar energy concentrator using angular multiplexed and iterative recording method // IEEE Photonics J. 2016. V. 8. P. 8400511. https://doi.org/10.1109/JPHOT.2016.2634699
  10. Keshri S., Rogers B., Murphy K., Reynolds K., Naydenova I., Martin S. Development and testing of a dual­wavelength sensitive photopolymer layer for applications in stacking of HOE lenses // Appl. Sci. 2021. V. 11. P. 5564. http://doi.org/10.3390/app11125564
  11. Castro J.M., Zhang D., Myer B., Kostuk R.K. Energy collection efficiency of holographic planar solar concentrators // Appl. Opt. 2010. V. 49. P. 858–870. https://doi.org/10.1364/AO.49.000858
  12. Akbari H., Naydenova I., Martin S. Using acrylamide­based photopolymers for fabrication of holographic optical elements in solar energy applications // Appl. Opt. 2014. V. 53. P. 1343–1363. https://doi.org/10.1364/AO.53.001343
  13. de Jong T., de Boer D., Bastiaansen C. Surface­relief and polarization gratings for solar concentrators // Opt. Exp. 2011. V. 19. P. 15127–15143. https://doi.org/10.1364/OE.19.015127
  14. Xiang X., Kim J., Escuti M.J. Bragg polarization gratings for wide angular bandwidth and high efficiency at steep deflection angles // Sci. Rep. 2018. V. 8. P. 7202. https://doi.org/10.1038/s41598­018­25535­0
  15. Marín­Sáez J., Atencia J., Chemisana D., Collados M.­V. Characterization of volume holographic optical elements recorded in Bayfol HX photopolymer for solar photovoltaic applications // Opt. Exp. 2016. V. 24. P. 720–730. https://doi.org/10.1364/OE.24.00A720
  16. Keshri S., Marín­Sáez J., Naydenova I., Murphy K., Atencia J., Chemisana D., Garner S., Collados M.V., Martin S. Stacked volume holographic gratings for extending the operational wavelength range in LED and solar applications // Appl. Opt. 2020. V. 59. P. 2569–2579. https://doi.org/10.1364/AO.383577
  17. Vorzobova N., Sokolov P. Application of photopolymer materials in holographic technologies // Polymers. 2019. V. 11. P. 2020. https://doi.org/10.3390/polym11122020
  18. Vorzobova N., Sokolov P. Properties of holographic elements based on periodic structures in a wide range of angles of incidence // Photonics. 2021. V. 8. P. 562. https://doi.org/10.3390/photonics8120562
  19. Burunkova Yu.E., Semina S.A., Kaporski L.N., Levichev V.V. Nanomodified optical acrylate composites // J. Opt. Technol. 2008. V. 75. P. 653–657. https://doi.org/10.1364/JOT.75.000653
  20. Vorzobova N.D., Sokolov P.P., Veselov V.V., Schelkanova I.J. Holographic formation and diffractive properties of hybrid periodic structures // Appl. Opt. 2018. V. 57. P. 3323–3328. https://doi.org/10.1364/AO.57.003323
  21. Bjelkhagen H.I. Silver­halide recording materials for holography and their processing. Berlin Heidelberg: Springer Verlag, 1995. 461 p.