DOI: 10.17586/1023-5086-2023-90-03-26-37
УДК: 535.016
Comparative analysis estimates for two-relief microstructures diffraction efficiency in the visible and dual infrared ranges in the framework of scalar and rigorous diffraction theories
Full text on elibrary.ru
Грейсух Г.И., Ежов Е.Г., Антонов А.И., Данилов В.А., Усиевич Б.А. Сопоставительный анализ оценок дифракционной эффективности двухрельефных микроструктур видимого и двойного инфракрасного диапазонов в рамках скалярной и строгой теорий дифракции // Оптический журнал. 2023. Т. 90. № 3. С. 26–37. http://doi.org/10.17586/1023-5086-2023-90-03-26-37
Greisukh G.I., Ezhov E.G., Antonov A.I., Danilov V.A., Usievich B.A. Comparative analysis estimates for two-relief microstructures diffraction efficiency in the visible and dual infrared ranges in the framework of scalar and rigorous diffraction theories [in Russian] // Opticheskii Zhurnal. 2023. V. 90. № 3. P. 26–37. http://doi.org/10.17586/1023-5086-2023-90-03-26-37
G. I. Greisukh, E. G. Ezhov, A. I. Antonov, V. A. Danilov, and B. A. Usievich, "Comparative analysis estimates for two-relief microstructure diffraction efficiency in the visible and dual-infrared ranges in the framework of scalar and rigorous diffraction theories," Journal of Optical Technology. 90(3), 119-124 (2023). https://doi.org/10.1364/JOT.90.000119
Subject of study. Diffraction efficiency of twolayer diffractive microstructures with two sawtooth internal reliefs. Aim of study. Assess the reliability of the results degree obtained in the scalar approximation, but taking into account the real depths of two sawtooth reliefs (by the effective area method), when arranging and calculating microstructures intended for operation in the dual infrared range, including the middle and far infrared radiation subranges (3,4–11,4 µm). This applies to the selection of the optical materials optimal pairs, to the estimation of the relief optimal depths, and to the achievable diffraction efficiency the estimation within angles given range of incidence of radiation on the microstructure for a chosen relative spatial period of the microstructure. Method. Combined mathematical modeling within the framework of scalar and rigorous diffraction theories. Main results. It is shown that in the dual infrared range, additional electromagnetic optimization can give results that differ significantly from the results obtained by the effective area method only if the total depth of the reliefs exceeds the average wavelength of the working spectral range by more than an order of magnitude. Practical significance. The presented results open up the possibility of a significant reduction in labor costs in the refractivediffractive dual infrared lenses design.
Acknowledgment: the study was supported by a grant from the Russian Science Foundation (Project № 201900081).
twolayer diffractive microstructure, diffraction efficiency, scalar and rigorous diffraction theories, dual infrared range
OCIS codes: 050.0050
References:- Bobrov S.T., Greisukh G.I., Turkevich Yu.G. Optics of diffractive elements and systems [in Russian]. Leningrad: Mashinostroenie Publisher, 1986. 223 p.
- Greisukh G.I., Bobrov S.T., Stepanov SA. Optics of diffractive elements and systems. Bellingham: SPIE Press, 1997. 414 p.
- Arieli Y., Ozeri S., Eisenberg N. Design of a diffractive optical element for wide spectral bandwidth // Opt. Lett. 1998. V. 23. № 11. P. 823–824.
- Lukin A.V. Holographic optical elements // J. Opt. Technol. 2007. V. 74. № 1. P. 65–70.
- Greisukh G.I., Ezhov E.G., Stepanov S.A. Select of materials for “achromatization” of the phaserelief diffractive structures [in Russian] // Computer Optics. 2008. V. 32(1). P. 43–46.
- Zhao Y.H., Fan C.J., Ying C.F., Liu S.H. The investigation of triplelayer diffraction optical element with wide field of view and high diffraction efficiency // Opt. Com. 2013. V. 295. P. 104–107. http://doi.org/10.1016/j.optcom.2013.01.009
- Greisukh G.I., Danilov V.A., Ezhov E.G., Stepanov S.A., Usievich B.A. Spectral and angular dependences of the efficiency of reliefphase diffractive lenses with two and threelayer microstructures // Optics and Spectroscopy. 2015. V. 118. № 6. P. 964–970. http://doi.org/10.1134/S0030400X15060090
- Greisukh G.I., Danilov V.A., Ezhov E.G., Stepanov S.A., Usievich B.A. Spectral and angular dependences of the efficiency of diffraction lenses with a dualrelief and twolayer microstructure // J. Opt. Technol. 2015. V. 82. № 5. P. 308–311. https://doi.org/10.1364/JOT.82.000308
- Greisukh G.I., Danilov V.A., Stepanov S.A., Antonov A.I., Usievich B.A. Spectral and angular dependences of the efficiency of threelayer reliefphase diffraction elements of the IR range // Optics and Spectroscopy. 2018. V. 125. № 1. P. 60–64. https://doi.org/10.1134/S0030400X18070123
- Greisukh G.I., Danilov V.A., Ezhov E.G., Kazin S.V., Usievich B.A. Highly efficient doublelayer diffraction microstructures based on new plastics and molded glasses // Photonics. 2021. V. 8. № 8. P. 327. https://doi.org/10.3390/photonics8080327
- Yang H., Xue C., Li C., Wang J., Zhang R. Diffraction efficiency sensitivity to oblique incident angle for multilayer diffractive optical elements // Appl. Opt. 2016. V. 55. № 25. P. 7126–7133. https://doi.org/10.1364/AO.55.007126
- Yang C., Yang H., Li C., Xue C. Optimization and analysis of infrared multilayer diffractive optical elements with finite feature sizes // Appl. Opt. 2019. V. 58. P. 2589–2595. https://doi.org/10.1364/AO.58.002589
- Moharam M.G., Gaylord T.K. Diffraction analysis of dielectric surfacerelief gratings // JOSA. 1982. V. 72. № 10. P. 1385–1392.
- Greisukh G.I., Danilov V.A., Ezhov E.G., Stepanov S.A., Usievich B.A. Comparison of electromagnetic and scalar methods for evaluation of efficiency of diffractive lenses for wide spectral bandwidth // Opt. Com. 2015. V. 338. P. 54–57. https://doi.org/10.1016/J.OPTCOM.2014.10.037
- Antonov A.I., Greisukh G.I., Kazin S.V. Certificate of state registration of the computer program № 2022681578 (2022). [in Russian].
- Lyndin N.M. Modal and C Methods Grating Design. Available online: http://www.mcgrating.com (accessed on 09 October 2022).
- Zemax Source. Available online: http://www.zemax.com/pages/opticstudio/ (accessed on 28 June 2022).
- Mitsubishi Gas Chemical. Available online: http://www.mgc.co.jp/eng/products/kc/iupizeta_ep.html (accessed on 09 October 2022)
- Zhang Bo, Qingfeng Cui, Mingxu Piao. Design of dualband infrared lens with multilayer diffractive optical element // Proc. SPIE 11337. AOPC 2019: Optical Spectroscopy and Imaging. 2019. 113370R. https://doi.org/10.1364/AO.58.002058
- Zhang Bo, Qingfeng Cui, Mingxu Piao, Yang Hu. Design of dualband infrared zoom lens with multilayer diffractive optical elements // Appl. Opt. 2019. V. 58. № 8. P. 2058–2067. https://doi.org/10.1364/AO.58.002058
- Greisukh G.I., Danilov V.A., Ezhov E.G., Antonov A.I., Usievich B.A. Diffractive elements in optical systems of middle and double IR range // Photonics Russia. 2020. V. 14. № 2. P. 160–169. https://doi.org/10.22184/19937296.FRos.2020.14.2.160.169
- Greisukh G.I., Levin I.A., Kasin S.V. Active athermalization of dualinfrared zoom lenses // Computer Optics. 2020. V. 44(6). Р. 931–936. https://doi.org/10.18287/24126179CO775
- Laborde V., Loicq J., Habraken S., Kershen G. Making compact and innovative dualband thermal imagers using hybrid optical element // Proc. SPIE 11852. Internat. Conf. Space Optics — ICSO 2020. 2020. 118522E. https://doi.org/10.1117/12.2599377