ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-03-26-37

УДК: 535.016

Comparative analysis estimates for two-relief microstructures diffraction efficiency in the visible and dual infrared ranges in the framework of scalar and rigorous diffraction theories

For Russian citation (Opticheskii Zhurnal):

Грейсух Г.И., Ежов Е.Г., Антонов А.И., Данилов В.А., Усиевич Б.А. Сопоставительный анализ оценок дифракционной эффективности двухрельефных микроструктур видимого и двойного инфракрасного диапазонов в рамках скалярной и строгой теорий дифракции // Оптический журнал. 2023. Т. 90. № 3. С. 26–37. http://doi.org/10.17586/1023-5086-2023-90-03-26-37

 

Greisukh G.I., Ezhov E.G., Antonov A.I., Danilov V.A., Usievich B.A. Comparative analysis estimates for two-relief microstructures diffraction efficiency in the visible and dual infrared ranges in the framework of scalar and rigorous diffraction theories [in Russian] // Opticheskii Zhurnal. 2023. V. 90. № 3. P. 26–37. http://doi.org/10.17586/1023-5086-2023-90-03-26-37

For citation (Journal of Optical Technology):

G. I. Greisukh, E. G. Ezhov, A. I. Antonov, V. A. Danilov, and B. A. Usievich, "Comparative analysis estimates for two-relief microstructure diffraction efficiency in the visible and dual-infrared ranges in the framework of scalar and rigorous diffraction theories," Journal of Optical Technology. 90(3), 119-124 (2023). https://doi.org/10.1364/JOT.90.000119

Abstract:

Subject of study. Diffraction efficiency of two­layer diffractive microstructures with two sawtooth internal reliefs. Aim of study. Assess the reliability of the results degree obtained in the scalar approximation, but taking into account the real depths of two sawtooth reliefs (by the effective area method), when arranging and calculating microstructures intended for operation in the dual infrared range, including the middle and far infrared radiation subranges (3,4–11,4 µm). This applies to the selection of the optical materials optimal pairs, to the estimation of the relief optimal depths, and to the achievable diffraction efficiency the estimation within angles given range of incidence of radiation on the microstructure for a chosen relative spatial period of the microstructure. Method. Combined mathematical modeling within the framework of scalar and rigorous diffraction theories. Main results. It is shown that in the dual infrared range, additional electromagnetic optimization can give results that differ significantly from the results obtained by the effective area method only if the total depth of the reliefs exceeds the average wavelength of the working spectral range by more than an order of magnitude. Practical significance. The presented results open up the possibility of a significant reduction in labor costs in the refractive­diffractive dual infrared lenses design.

 

Acknowledgment: the study was supported by a grant from the Russian Science Foundation (Project № 20­19­00081).

Keywords:

two­layer diffractive microstructure, diffraction efficiency, scalar and rigorous diffraction theories, dual infrared range

OCIS codes: 050.0050

References:
  1. Bobrov S.T., Greisukh G.I., Turkevich Yu.G. Optics of diffractive elements and systems [in Russian]. Leningrad: Mashinostroenie Publisher, 1986. 223 p.
  2. Greisukh G.I., Bobrov S.T., Stepanov SA. Optics of diffractive elements and systems. Bellingham: SPIE Press, 1997. 414 p.
  3. Arieli Y., Ozeri S., Eisenberg N. Design of a diffractive optical element for wide spectral bandwidth // Opt. Lett. 1998. V. 23. № 11. P. 823–824.
  4. Lukin A.V. Holographic optical elements // J. Opt. Technol. 2007. V. 74. № 1. P. 65–70.
  5. Greisukh G.I., Ezhov E.G., Stepanov S.A. Select of materials for “achromatization” of the phase­relief diffractive structures [in Russian] // Computer Optics. 2008. V. 32(1). P. 43–46.
  6. Zhao Y.H., Fan C.J., Ying C.F., Liu S.H. The investigation of triple­layer diffraction optical element with wide field of view and high diffraction efficiency // Opt. Com. 2013. V. 295. P. 104–107. http://doi.org/10.1016/j.optcom.2013.01.009
  7. Greisukh G.I., Danilov V.A., Ezhov E.G., Stepanov S.A., Usievich B.A. Spectral and angular dependences of the efficiency of relief­phase diffractive lenses with two­ and three­layer microstructures // Optics and Spectroscopy. 2015. V. 118. № 6. P. 964–970. http://doi.org/10.1134/S0030400X15060090
  8. Greisukh G.I., Danilov V.A., Ezhov E.G., Stepanov S.A., Usievich B.A. Spectral and angular dependences of the efficiency of diffraction lenses with a dual­relief and two­layer microstructure // J. Opt. Technol. 2015. V. 82. № 5. P. 308–311. https://doi.org/10.1364/JOT.82.000308
  9. Greisukh G.I., Danilov V.A., Stepanov S.A., Antonov A.I., Usievich B.A. Spectral and angular dependences of the efficiency of three­layer relief­phase diffraction elements of the IR range // Optics and Spectroscopy. 2018. V. 125. № 1. P. 60–64. https://doi.org/10.1134/S0030400X18070123
  10. Greisukh G.I., Danilov V.A., Ezhov E.G., Kazin S.V., Usievich B.A. Highly efficient double­layer diffraction microstructures based on new plastics and molded glasses // Photonics. 2021. V. 8. № 8. P. 327. https://doi.org/10.3390/photonics8080327
  11. Yang H., Xue C., Li C., Wang J., Zhang R. Diffraction efficiency sensitivity to oblique incident angle for multilayer diffractive optical elements // Appl. Opt. 2016. V. 55. № 25. P. 7126–7133. https://doi.org/10.1364/AO.55.007126
  12. Yang C., Yang H., Li C., Xue C. Optimization and analysis of infrared multilayer diffractive optical elements with finite feature sizes // Appl. Opt. 2019. V. 58. P. 2589–2595. https://doi.org/10.1364/AO.58.002589
  13. Moharam M.G., Gaylord T.K. Diffraction analysis of dielectric surface­relief gratings // JOSA. 1982. V. 72. № 10. P. 1385–1392.
  14. Greisukh G.I., Danilov V.A., Ezhov E.G., Stepanov S.A., Usievich B.A. Comparison of electromagnetic and scalar methods for evaluation of efficiency of diffractive lenses for wide spectral bandwidth // Opt. Com. 2015. V. 338. P. 54–57. https://doi.org/10.1016/J.OPTCOM.2014.10.037
  15. Antonov A.I., Greisukh G.I., Kazin S.V. Certificate of state registration of the computer program № 2022681578 (2022). [in Russian].
  16. Lyndin N.M. Modal and C Methods Grating Design. Available online: http://www.mcgrating.com (accessed on 09 October 2022).
  17. Zemax Source. Available online: http://www.zemax.com/pages/opticstudio/ (accessed on 28 June 2022).
  18. Mitsubishi Gas Chemical. Available online: http://www.mgc.co.jp/eng/products/kc/iupizeta_ep.html (accessed on 09 October 2022)
  19. Zhang Bo, Qingfeng Cui, Mingxu Piao. Design of dual­band infrared lens with multilayer diffractive optical element // Proc. SPIE 11337. AOPC 2019: Optical Spectroscopy and Imaging. 2019. 113370R. https://doi.org/10.1364/AO.58.002058
  20. Zhang Bo, Qingfeng Cui, Mingxu Piao, Yang Hu. Design of dual­band infrared zoom lens with multilayer diffractive optical elements // Appl. Opt.  2019. V. 58. № 8. P. 2058–2067. https://doi.org/10.1364/AO.58.002058
  21. Greisukh G.I., Danilov V.A., Ezhov E.G., Antonov A.I., Usievich B.A. Diffractive elements in optical systems of middle and double IR range // Photonics Russia. 2020. V. 14. № 2. P. 160–169. https://doi.org/10.22184/1993­7296.FRos.2020.14.2.160.169
  22. Greisukh G.I., Levin I.A., Kasin S.V. Active athermalization of dual­infrared zoom lenses // Computer Optics. 2020. V. 44(6). Р. 931–936. https://doi.org/10.18287/2412­6179CO­775
  23. Laborde V., Loicq J., Habraken S., Kershen G. Making compact and innovative dual­band thermal imagers using hybrid optical element // Proc. SPIE 11852. Internat. Conf. Space Optics — ICSO 2020. 2020. 118522E. https://doi.org/10.1117/12.2599377