DOI: 10.17586/1023-5086-2023-90-03-38-47
УДК: 535.412, 535-3
Relief-phase high-frequency holographic gratings on gelatin-containing photosensitive media
Full text on elibrary.ru
Publication in Journal of Optical Technology
Архипов А.В., Ганжерли Н.М., Гуляев С.Н., Маурер И.А. Рельефно-фазовые высокочастотные голографические решетки на содержащих желатин светочувствительных средах // Оптический журнал. 2023. Т. 90. № 3. С. 38–47. http://doi.org/10.17586/1023-5086-2023-90-03-38-47
Arkhipov A.V., Ganzherli N.М., Gulyaev S.N., Maurer I.A. Relief-phase highfrequency holographic gratings on gelatin-containing photosensitive media [in Russian] // Opticheskii Zhurnal. 2023. V. 90. № 3. P. 38–47. http://doi.org/10.17586/1023-5086-2023-90-03-38-47
A. V. Arkhipov, N. M. Ganzherli, S. N. Gulyaev, and I. A. Maurer, "High-frequency relief-phase holographic gratings on gelatin-containing photosensitive media," Journal of Optical Technology. 90(3), 125-130 (2023). https://doi.org/10.1364/JOT.90.000125
Subject of study. The registration processes of highly effective relief phase holographic structures on gelatincontaining photosensitive media at high spatial frequencies. Aim of study. The development of advanced technologies for processing recording media based on the destructive effect of shortwave ultraviolet radiation on gelatin. Method. The inclusion in the processing photosensitive layers technology of a significantly shortened time procedure for etching gelatin irradiated with ultraviolet radiation to suppress the influence of surface tension forces smoothing the surface relief of the structure at high spatial frequencies. Water and solutions of glacial acetic acid in isopropyl alcohol were used as etchants. The main results. The samples of relief phase holographic gratings created for the first time demonstrate high diffraction efficiency in the range of spatial frequencies 1200–1600 mm–1 up to 67% for dichromated gelatin (PFG04 photographic plates of "Slavich Company") and 42% for silver halide emulsion (PFG01 photographic plates of "Slavich Company") and have low angular selectivity. High diffraction efficiency values were obtained in a wide range of thicknesses from 0.7 to 26 µm of the recording media used. Practical significance. The proposed improved methods of processing gelatincontaining photosensitive layers contribute to an increase of the range of recorded spatial frequencies during the formation of relief phase holographic structures and thereby expand the scope of application of silver halide photoemulsions and dichromated gelatin in holography.
holographic grating, dichromated gelatin, silver halide photoemulsion, photographic plates PFG01 and PFG04, shortwave ultraviolet radiation, surface relief, diffraction efficiency
OCIS codes: 090.0090, 160.5335, 120.6650, 260.7190, 350.5130, 180.5810
References:- Popov E. Introduction to diffraction gratings: Summary of applications. Theory and numeric applications. Marseille: Presses universitaires de Provence (PUP), 2012. P. 1.1–1.23. http://www.fresnel.fr/numericalgratingbook
- Pavlycheva N.K. Diffraction gratings for spectral devices [Review] // J. Opt. Technol. 2022. V. 89. № 3. P. 142–150. https://doi.org/10.1364/JOT.89.000142
- Bonod N., Neauport J. Diffraction gratings: From principles to applications in highintensity lasers // Adv. Opt. Photon. 2016. V. 8. № 1. P. 156–199. https://doi.org/10.1364/aop.8.000156
- Calixto S., Ganzherli N., Gulyaev S., and FigueroaGerstenmaier S. Gelatin as a photosensitive material // Molecules. 2018. V. 8. № 23. P. 2064–2086. https://doi.org/10.3390/molecules23082064
- Kim J.M., Choi B.S., Choi Y.S. Kim J.M., Bjelkhagen H.I., Phillips N.J. Holographic optical elements recorded in silver halide sensitized gelatin emulsions. Part 2. Reflection holographic optical elements // Appl. Opt. 2002. V. 41. № 8. P. 1522–1533. https://doi.org/10.1364/ao.41.001522
- Ganzherli N.M., Gulyaev S.N., Maurer I.A., Arkhipov A.V. Mechanisms of generation of relief highfrequency holographic structures on dichromated gelatin exposed to shortwave UV radiation // Optoelectronics, Instrumentation and Data Proc. 2020. V. 56. № 2. P. 77–83. https://doi.org/10.3103/S87566999020020065
- Shankoff T.A. Phase holograms in dichromated gelatin// Appl. Opt. 1968. V. 7. № 10. P. 2101–2105. https://doi.org/ 10.1364/ao.7.002101
- Lin L.H. Hologram formation in hardened dichromated gelatin film //Appl. Opt. 1969. V. 8. № 5. P. 963–969. https://doi.org/10.1364/ao.8.000963
- Calixto S., Piazza V., Garnica G. Surface profile studies of photoinduced gratings made with DCG films with optional papain development // Gels. 2022. V. 8. № 2. 102. https://doi.org/10.3390/gels8020102
- Moreau W.M. Semiconductor lithography: Principles, practices, and materials, plenum. NY: Plenum Press, 1988. 930 p. https://doi.org/ 10.1007/9781461308850
- Doskolovich L.L. Calculation of diffraction gratings within the framework of rigorous electromagnetic theory [in Russian]. Samara: SSAU Publisher, 2007. P. 80.
- Barachevsky V.A. The current status of the development of lightsensitive media for holography (a review) // Optics and Spectroscopy. 2018. V. 124. № 3. P. 373–407. https://doi.org/10.1134/S0030400X18030062
- Ulibarrena M., Méndez M. J., Carretero L. Madrigal R., and Fimia A. Comparison of direct, rehalogenating, and solvent bleaching processes with BB640 plate // Appl. Opt. 2002. V. 41. № 20. P. 4120–4123. https://doi.org/10.1364/AO.41.004120
- Neipp C., Pascual I., Beléndez A. Effects of overmodulation in fixationfree rehalogenating bleached holograms // Appl. Opt. 2001. V. 40. № 20. P. 3402–3408. https://doi.org/10.1364/ao.40.003402
- Ganzherli N.M., Gulyaev S.N., Maurer I.A. Registration of highfrequency reliefphase structures on silver halide photographic material PFG01 [in Russian] // Optics and Spectroscopy. 2022. V. 130. № 9. Р. 1385–1388. https://doi.org/10.21883/OS.2022.09.53299.3786–22