ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-03-48-59

УДК: 681.785.55, 535-32

Fabrication of plane and concave varied line-space gratings for the vacuum spectral domain by interference lithography and their application

For Russian citation (Opticheskii Zhurnal):

Колесников А.О., Михайлов В.Н., Рагозин Е.Н., Ратушный В.П., Соловьев А.А., Шатохин А.Н. Создание плоских и вогнутых решеток с переменным шагом для вакуумной области спектра методом интерференционной литографии и их применение // Оптический журнал. 2023. Т. 90. № 3. С. 48–59. http://doi.org/10.17586/1023-5086-2023-90-03-48-59

 

Kolesnikov A.O., Mikhailov V.N., Ragozin E.N., Ratushnyi V.P., Soloviev A.A., Shatokhin A.N. Fabrication of plane and concave varied line-space gratings for the vacuum spectral domain by interference lithography and their application [in Russian] // Opticheskii Zhurnal. 2023. V. 90. № 3. P. 48–59. http://doi.org/10.17586/1023-5086-2023-90-03-48-59

For citation (Journal of Optical Technology):

A. O. Kolesnikov, V. N. Mikhailov, E. N. Ragozin, V. P. Ratushnyi, A. A. Soloviev, and A. N. Shatokhin, "Fabrication and application of plane and concave varied line-space gratings for the vacuum spectral domain by interference lithography," Journal of Optical Technology. 90(3), 131-137 (2023). https://doi.org/10.1364/JOT.90.000131

Abstract:

Subject of study. The feasibility of making gratings with a spacing that varies on the grating surface according to a given law (the so­called varied line­space gratings), with an average (about 600 mm–1) and high (up to 3000 mm–1) groove frequency by interference lithography at an argon laser wavelength of 488 nm. Aim of study. Development of high­resolution flat­field varied line­space grating spectrographs for the vacuum ultraviolet and soft X­ray regions of the spectrum and their testing by grating recording line spectra of multiply charged ions in laser plasma. Method. The developed method makes it possible to make diffraction varied line­space gratings for operation in spectrographs at grazing incidence of radiation. At the first stage, the optical scheme with a spherical aberrator mirror is designed, which provides the required frequency distribution of the interference fringes on the grating surface. After the “writing” of the grating on the photoresist and its development, the parameters of the resulting grating are measured by the diffraction of laser radiation (632.8 nm), the spectrograph is aligned, line spectra are recorded in the soft X­ray region of the spectrum, and the characteristics of the instrument are evaluated. Main results. Varied line­space gratings with a gold reflective coating were fabricated: plane (with groove frequencies of 530 and 670 mm–1 at the edges of the grating) and spherical (curvature radius is 6 m, frequencies are 2100 and 2700 mm–1). The parameters of the varied line­space gratings are close to the design ones. The spectra of multiply charged ions were obtained in the range of 10–25 nm, and the spectral resolving power of 103, limited only by the pixel size (13 µm) of the CCD detector in use, was demonstrated. Practical significance. The capabilities of the domestic technology of interference lithography for the fabrication of varied line­space gratings and varied line­space grating spectrographs based on them for the soft X­ray range of the spectrum are demonstrated. The spectrograph will be used to detect soft X­rays during the interaction of multiterawatt laser radiation with various targets.

         Acknowledgment: the work was supported by the Russian Science Foundation (Grant 20­62­46050).

Keywords:

varied line­space grating, interference lithography, soft X­ray range, flat­field spectrograph, stigmatic spectrograph, X­ray multilayer mirrors

OCIS codes: 050.1950, 110.3960, 120.6200, 300.6540, 300.6560, 340.7470

References:
  1. Kita T., Harada T., Nakano N., Kuroda H. Mechanically ruled aberration­corrected concave gratings for a flat­field grazing­incidence spectrograph // Appl. Opt. 1983. V. 22. № 4. P. 512–513. https://doi.org/10.1364/AO.22.000512
  2. Harada T. Design and application of a varied­space plane grating monochromator for synchrotron radiation // Nuclear Instruments and Methods in Physics Research. Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 1990. V. 291. № 1–2. P. 179–184. https://doi.org/10.1016/0168­9002(90)90056­C
  3. Hettrick M.C., Underwood J.H. Varied­space grazing incidence gratings in high resolution scanning spectrometers // AIP Conf. Proc. American Institute of Physics. 1986. V. 147. № 1. P. 237–245. https://doi.org/10.1063/1.35993
  4. Kolesnikov A., Vishnyakov E., Shatokhin A., Ragozin E. Conception of a single­component broadband high­resolution plane­VLS­grating monochromator // Appl. Opt. 2022. V. 61. № 17. P. 5334–5340. https://doi.org/10.1364/AO.462053
  5. Vishnyakov E.A., Shatokhin A.N., Ragozin E.N. Conception of broadband stigmatic high­resolution spectrometers for the soft X­ray range // Quantum Electron. 2015. V. 45. № 4. P. 371–376. https://doi.org/10.1070/QE2015v045n04ABEH015595
  6. Shatokhin A.N., Kolesnikov A.O., Sasorov P.V., Vishnyakov E.A., Ragozin E.N. High­resolution stigmatic spectrograph for a wavelength range of 12.5–30 nm // Opt. Exp. 2018. V. 26. № 15. P. 19009–19019. https://doi.org/10.1364/OE.26.019009
  7. Soloviev A., Burdonov K., Chen S.N., Eremeev A., Korzhimanov A., Pokrovskiy G.V., Pikuz T.A., Revet G., Sladkov A., Ginzburg V., Khazanov E., Kuzmin A., Osmanov R., Shaikin I., Shaykin A., Yakovlev I., Pikuz S., Starodubtsev M., Fuchs J. Experimental evidence for short­pulse laser heating of solid­density target to high bulk temperatures // Sci. Rep. 2017. V. 7. Article ID: 12144. https://doi.org/10.1038/s41598­017­11675­2
  8. Pirozhkov A.S., Esirkepov T.Zh., Pikuz T.A., Faenov A.Ya., Ogura K., Hayashi Y., Kotaki H., Ragozin E.N., Neely D., Kiriyama H., Koga J.K., Fukuda Y., Sagisaka A., Nishikino M., Imazono T., Hasegawa N., Kawachi T., Bolton P.R., Daido H., Kato Y., Kondo K., Bulanov S.V., Kando M. Burst intensification by singularity emitting radiation in multi­stream flows // Sci. Rep. 2017. V. 7. № 1. Article number: 17968. https://doi.org/10.1038/s41598­017­17498­5
  9. Ragozin E.N., Vishnyakov E.A., Kolesnikov A.O., Pirozhkov A.S., Shatokhin A.N. Soft X­ray spectrometers based on aperiodic reflection gratings and their application // Physics — Uspekhi. 2021. V. 64. № 5. P. 495–514. https://doi.org/10.3367/UFNr.2020.06.038799
  10. Lin D., Liu Z., Dietrich K., Sokolov A., Sertsu M.G., Zhou H., Huo T., Kroker S., Chen H., Qiu K., Xu X., Schäfers F., Liu Y., Kley E.­B., Hong Y. Soft X­ray varied­line­spacing gratings fabricated by near­field holography using an electron beam lithography­written phase mask // J. Synchrotron Radiation. 2019. V. 26. № 5. P. 1782–1789. https://doi.org/10.1107/S1600577519008245
  11. DeRoo C.T., Termini J., Grisé F., McEntaffer R.L., Donovan B.D., Eichfeld C. Limiting spectral resolution of a reflection grating made via electron­beam lithography // Astrophys. J. 2020. V. 904. № 2. P. 142–151. https://doi.org/10.3847/1538­4357/abbe15
  12. Kolesnikov A.O., Ragozin E.N., Shatokhin A.N. The concept of a stigmatic flat­field X­ray spectrograph based on conical diffraction // Quantum Electron. 2022. V. 52. № 5. P. 491–496. https://doi.org/10.1070/QEL18048
  13. McCoy J.A., McEntaffer R.L., Miles D.M. Extreme ultraviolet and soft X­ray diffraction efficiency of a blazed reflection grating fabricated by thermally activated selective topography equilibration // Astrophys. J. 2020. V. 891. № 2. P. 114–125. https://doi.org/10.3847/1538­4357/ab76d3
  14. Harzendorf T., Michaelis D., Flügel­Paul T., Bianco A., Oliva E., Zeitner U. Surface relief gratings manufactured by lithographic means being a candidate for VLT MOONS instrument’s main dispersers // Proc. SPIE. 2018. V. 10706. P. 1070621. https://doi.org/10.1117/12.2313164
  15. Namioka T., Koike M. Aspheric wave­front recording optics for holographic gratings // Appl. Opt. 1995. V. 34. № 13. P. 2180–2186. https://doi.org/10.1364/AO.34.002180