DOI: 10.17586/1023-5086-2023-90-03-48-59
УДК: 681.785.55, 535-32
Fabrication of plane and concave varied line-space gratings for the vacuum spectral domain by interference lithography and their application
Full text on elibrary.ru
Publication in Journal of Optical Technology
Колесников А.О., Михайлов В.Н., Рагозин Е.Н., Ратушный В.П., Соловьев А.А., Шатохин А.Н. Создание плоских и вогнутых решеток с переменным шагом для вакуумной области спектра методом интерференционной литографии и их применение // Оптический журнал. 2023. Т. 90. № 3. С. 48–59. http://doi.org/10.17586/1023-5086-2023-90-03-48-59
Kolesnikov A.O., Mikhailov V.N., Ragozin E.N., Ratushnyi V.P., Soloviev A.A., Shatokhin A.N. Fabrication of plane and concave varied line-space gratings for the vacuum spectral domain by interference lithography and their application [in Russian] // Opticheskii Zhurnal. 2023. V. 90. № 3. P. 48–59. http://doi.org/10.17586/1023-5086-2023-90-03-48-59
A. O. Kolesnikov, V. N. Mikhailov, E. N. Ragozin, V. P. Ratushnyi, A. A. Soloviev, and A. N. Shatokhin, "Fabrication and application of plane and concave varied line-space gratings for the vacuum spectral domain by interference lithography," Journal of Optical Technology. 90(3), 131-137 (2023). https://doi.org/10.1364/JOT.90.000131
Subject of study. The feasibility of making gratings with a spacing that varies on the grating surface according to a given law (the socalled varied linespace gratings), with an average (about 600 mm–1) and high (up to 3000 mm–1) groove frequency by interference lithography at an argon laser wavelength of 488 nm. Aim of study. Development of highresolution flatfield varied linespace grating spectrographs for the vacuum ultraviolet and soft Xray regions of the spectrum and their testing by grating recording line spectra of multiply charged ions in laser plasma. Method. The developed method makes it possible to make diffraction varied linespace gratings for operation in spectrographs at grazing incidence of radiation. At the first stage, the optical scheme with a spherical aberrator mirror is designed, which provides the required frequency distribution of the interference fringes on the grating surface. After the “writing” of the grating on the photoresist and its development, the parameters of the resulting grating are measured by the diffraction of laser radiation (632.8 nm), the spectrograph is aligned, line spectra are recorded in the soft Xray region of the spectrum, and the characteristics of the instrument are evaluated. Main results. Varied linespace gratings with a gold reflective coating were fabricated: plane (with groove frequencies of 530 and 670 mm–1 at the edges of the grating) and spherical (curvature radius is 6 m, frequencies are 2100 and 2700 mm–1). The parameters of the varied linespace gratings are close to the design ones. The spectra of multiply charged ions were obtained in the range of 10–25 nm, and the spectral resolving power of 103, limited only by the pixel size (13 µm) of the CCD detector in use, was demonstrated. Practical significance. The capabilities of the domestic technology of interference lithography for the fabrication of varied linespace gratings and varied linespace grating spectrographs based on them for the soft Xray range of the spectrum are demonstrated. The spectrograph will be used to detect soft Xrays during the interaction of multiterawatt laser radiation with various targets.
Acknowledgment: the work was supported by the Russian Science Foundation (Grant 206246050).
varied linespace grating, interference lithography, soft Xray range, flatfield spectrograph, stigmatic spectrograph, Xray multilayer mirrors
OCIS codes: 050.1950, 110.3960, 120.6200, 300.6540, 300.6560, 340.7470
References:- Kita T., Harada T., Nakano N., Kuroda H. Mechanically ruled aberrationcorrected concave gratings for a flatfield grazingincidence spectrograph // Appl. Opt. 1983. V. 22. № 4. P. 512–513. https://doi.org/10.1364/AO.22.000512
- Harada T. Design and application of a variedspace plane grating monochromator for synchrotron radiation // Nuclear Instruments and Methods in Physics Research. Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 1990. V. 291. № 1–2. P. 179–184. https://doi.org/10.1016/01689002(90)90056C
- Hettrick M.C., Underwood J.H. Variedspace grazing incidence gratings in high resolution scanning spectrometers // AIP Conf. Proc. American Institute of Physics. 1986. V. 147. № 1. P. 237–245. https://doi.org/10.1063/1.35993
- Kolesnikov A., Vishnyakov E., Shatokhin A., Ragozin E. Conception of a singlecomponent broadband highresolution planeVLSgrating monochromator // Appl. Opt. 2022. V. 61. № 17. P. 5334–5340. https://doi.org/10.1364/AO.462053
- Vishnyakov E.A., Shatokhin A.N., Ragozin E.N. Conception of broadband stigmatic highresolution spectrometers for the soft Xray range // Quantum Electron. 2015. V. 45. № 4. P. 371–376. https://doi.org/10.1070/QE2015v045n04ABEH015595
- Shatokhin A.N., Kolesnikov A.O., Sasorov P.V., Vishnyakov E.A., Ragozin E.N. Highresolution stigmatic spectrograph for a wavelength range of 12.5–30 nm // Opt. Exp. 2018. V. 26. № 15. P. 19009–19019. https://doi.org/10.1364/OE.26.019009
- Soloviev A., Burdonov K., Chen S.N., Eremeev A., Korzhimanov A., Pokrovskiy G.V., Pikuz T.A., Revet G., Sladkov A., Ginzburg V., Khazanov E., Kuzmin A., Osmanov R., Shaikin I., Shaykin A., Yakovlev I., Pikuz S., Starodubtsev M., Fuchs J. Experimental evidence for shortpulse laser heating of soliddensity target to high bulk temperatures // Sci. Rep. 2017. V. 7. Article ID: 12144. https://doi.org/10.1038/s41598017116752
- Pirozhkov A.S., Esirkepov T.Zh., Pikuz T.A., Faenov A.Ya., Ogura K., Hayashi Y., Kotaki H., Ragozin E.N., Neely D., Kiriyama H., Koga J.K., Fukuda Y., Sagisaka A., Nishikino M., Imazono T., Hasegawa N., Kawachi T., Bolton P.R., Daido H., Kato Y., Kondo K., Bulanov S.V., Kando M. Burst intensification by singularity emitting radiation in multistream flows // Sci. Rep. 2017. V. 7. № 1. Article number: 17968. https://doi.org/10.1038/s41598017174985
- Ragozin E.N., Vishnyakov E.A., Kolesnikov A.O., Pirozhkov A.S., Shatokhin A.N. Soft Xray spectrometers based on aperiodic reflection gratings and their application // Physics — Uspekhi. 2021. V. 64. № 5. P. 495–514. https://doi.org/10.3367/UFNr.2020.06.038799
- Lin D., Liu Z., Dietrich K., Sokolov A., Sertsu M.G., Zhou H., Huo T., Kroker S., Chen H., Qiu K., Xu X., Schäfers F., Liu Y., Kley E.B., Hong Y. Soft Xray variedlinespacing gratings fabricated by nearfield holography using an electron beam lithographywritten phase mask // J. Synchrotron Radiation. 2019. V. 26. № 5. P. 1782–1789. https://doi.org/10.1107/S1600577519008245
- DeRoo C.T., Termini J., Grisé F., McEntaffer R.L., Donovan B.D., Eichfeld C. Limiting spectral resolution of a reflection grating made via electronbeam lithography // Astrophys. J. 2020. V. 904. № 2. P. 142–151. https://doi.org/10.3847/15384357/abbe15
- Kolesnikov A.O., Ragozin E.N., Shatokhin A.N. The concept of a stigmatic flatfield Xray spectrograph based on conical diffraction // Quantum Electron. 2022. V. 52. № 5. P. 491–496. https://doi.org/10.1070/QEL18048
- McCoy J.A., McEntaffer R.L., Miles D.M. Extreme ultraviolet and soft Xray diffraction efficiency of a blazed reflection grating fabricated by thermally activated selective topography equilibration // Astrophys. J. 2020. V. 891. № 2. P. 114–125. https://doi.org/10.3847/15384357/ab76d3
- Harzendorf T., Michaelis D., FlügelPaul T., Bianco A., Oliva E., Zeitner U. Surface relief gratings manufactured by lithographic means being a candidate for VLT MOONS instrument’s main dispersers // Proc. SPIE. 2018. V. 10706. P. 1070621. https://doi.org/10.1117/12.2313164
- Namioka T., Koike M. Aspheric wavefront recording optics for holographic gratings // Appl. Opt. 1995. V. 34. № 13. P. 2180–2186. https://doi.org/10.1364/AO.34.002180