ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-03-60-67

УДК: 535.421

Optical scheme of high voltage equipment diagnostics device based on dichroic filters

For Russian citation (Opticheskii Zhurnal):

Чеплаков А.Н., Мельников А.Н., Лукин А.В. Оптическая схема устройства диагностики высоковольтного оборудования на базе дихроичных фильтров // Оптический журнал. 2023. Т. 90. № 3. С. 60–67. http://doi.org/10.17586/1023-5086-2023-90-03-60-67

 

Cheplakov A.N., Melnikov A.N., Lukin A.V. Optical scheme of high voltage equipment diagnostics device based on dichroic filters [in Russian] // Opticheskii Zhurnal. 2023. V. 90. № 3. P. 60–67. http://doi.org/10.17586/1023-5086-2023-90-03-60-67

For citation (Journal of Optical Technology):

Aleksandr N. Cheplakov, Andrei N. Melnikov, and Anatoly V. Lukin, "Optical scheme of a high voltage equipment diagnostics device based on dichroic filters," Journal of Optical Technology. 90(3), 138-141 (2023). https://doi.org/10.1364/JOT.90.000138

Abstract:

Subject of study. The possibility of using an optical system, which includes two dichroic filters, in a device for remote diagnostics of the state of high voltage equipment and power lines was investigated. Aim of study. Development of a new optical circuit of the device for diagnostics of high voltage equipment with improved spectral characteristics and obtaining images in the ultraviolet range of the spectrum, which includes a Cassegrain­type mirror lens, dichroic filters and matrix photodetectors. Method. It is based on the use of ray calculation of the investigated and optimized optical system of the device for remote diagnostics of high voltage equipment. Computer modeling and aberration calculations made it possible to determine the design and quality parameters of the optical system. Main results. The design parameters of the developed optical scheme, which includes dichroic filters to separate radiation different spectral ranges into separate optical channels, are given. Spectral transmission coefficients of the proposed calculated dichroic filters and options of matrix photo­receiving devices for each optical range are given. Results of aberration calculation and integral transmittance estimation are presented. Practical significance. The proposed optical scheme using dichroic filters allows increasing spectral transmission and obtaining images in the ultraviolet spectral range, and can be used in a device for diagnostics of high voltage equipment and power lines.

 

Acknowledgment: the creation of a prototype device for diagnosing high voltage equipment is carried out with the financial support of the Innovation Promotion Fund under contract № 33GSSS15­L/78995.

Keywords:

high voltage equipment, corona discharge, ultraviolet range, mirror lens, dichroic filter

OCIS codes: 110. 2970, 310.1620

References:
  1. Electronic resource URL: https://minenergo.gov.ru/sites/default/files/texts/04/21/5022/10._Ob_avariynyh_i_neshtatnyh_situaciyah_na_obektah_TEK_v_period_s_9_po_15_marta_2017.pdf
  2. Guo X., Ji Z., Gao Y., Ding J., Zhang L. 3D corona discharge model and its use in the presence of wind during a thunderstorm // Frontiers in Environmental Sci. 2022. July. P. 10. https://doi.org/10.3389/fenvs.2022.946020
  3. Abahazem A., Merbahi N., Guedah H., Yousfi M. Electric and spectroscopic studies of pulsed corona discharges in nitrogen at atmospheric pressure // J. Analytical Sciences, Methods and Instrumentation. 2017. July. P. 57–74. https://doi.org/10.4236/jasmi.2017.73006
  4. Lukin. А.V., Melnikov A.N., Pavlycheva N.K., Cheplakov A.N. Tri­band optical system for high voltage electrical discharge detection device [in Russian] // Bulletin of KSTU named after A.N. Tupolev. 2021. № 1. P. 109–117.
  5. Lukin А.V., Melnikov A.N., Pavlycheva N.K., Cheplakov A.N. Electric discharge detection device with the ability to study the spectrum in the ultraviolet range [in Russian] // XI Internat. Conf. Photonics and Information Optics: Collection of scientific papers. Moscow: NRNU MEPHI Publisher, 2022. P. 543–544.
  6. Geary J.M. Introduction to lens design with practical ZEMAX examples. Library of Congress Cataloging in Publication Data, 2002. 462 р.
  7. Smith W. Modern optical engineering: The design of optical systems. Carisbad, California: Kaiser Electro­ Optics Inc., 2008. 771 р
  8. Amra C., Lequime M., Zerrad M. Electromagnetic optics of thin­film coatings: Light scattering, giant field enhancement, and planar microcavities. Cambridge University Press, 2020. 396 р. ISBN: 9781108488877. https://doi.org/10.1017/9781108772372
  9. Osipovich I.R. Determination of the integral transmission coefficient of thermal imaging lenses under production control conditions [in Russian] // Sci. and Technical J. "Kontenant". 2015. № 4. P. 11–18.
  10. Ovsyannikov V.A., Ovsyannikov Y.V., Filippov V.L. On the ability of thermal imaging devices to detect obstacles [in Russian] // J. Aerospace Instrumentation. 2020. № 7. P. 12–23.
  11. Cheplakov A.N. Determination of integral transmission coefficients for a tri­band optical system for the detection and measurement of electrical discharge of high voltage equipment [in Russian] // Collection of Reports. Internat. Sci. Conf. XXV Tupolev Readings. 2021. V. 4.P. 299–303.
  12. Torshina I.P., Yakushenkov Y.G. Selection of a radiation receiver when designing an optoelectronic device. [in Russian] Moscow: MIIGAiK Publisher, 2017. 58 с.
  13. Gill A.S., Shaaban M.M., Tohuvavohu A., Sivanandam S. A low­cost ultraviolet­to­infrared absolute quantum efficiency characterization system of detectors // SPIE Astronomical Telescopes and Instrumentation. Conf. 2022. P. 15. https://doi.org/10.48550/arXiv.2207.13052
  14. Suder J. Parameters evaluation of cameras in embedded systems // Przeglad Elektrotechniczny. 2022. № 9. V. 1. P. 218–221. https://doi.org/10.15199/48.2022.09.50
  15. Montes de Oca A., Flores G. A UAS equipped with a thermal imaging system with temperature calibration for Crop Water Stress Index computation // 2021 Internat. Conf. Unmanned Aircraft Systems. 2021. P. 714–720. https://doi.org/10.1109/ICUAS51884.2021.9476863