DOI: 10.17586/1023-5086-2023-90-03-68-100
УДК: 54-161.6, 535.421
Photo-thermo-refractive glass — promising photonics material (a review)
Full text on elibrary.ru
Publication in Journal of Optical Technology
Никоноров Н.В., Иванов С.А., Мусихина Е.С. Фототерморефрактивное стекло — перспективный материал фотоники (обзор) // Оптический журнал. 2023. Т. 90. № 3. С. 68–100. http://doi.org/10.17586/1023-5086-2023-90-03-68-100
Nikonorov N.V., Ivanov S.A., Musikhina E.S. Photo-thermo-refractive glass — promising photonics material (a review) [in Russian] // Opticheskii Zhurnal. 2023. V. 90. № 3. P. 68–100. http://doi.org/10.17586/1023-5086-2023-90-03-68-100
N. V. Nikonorov, S. A. Ivanov, and E. S. Musikhina, "Photo-thermo-refractive glass: a promising photonics material [Review]," Journal of Optical Technology. 90(3), 142-160 (2023). https://doi.org/10.1364/JOT.90.000142
Subject of study. Photothermorefractive glass is a multifunctional material that is in high demand today in the photonics market, which has great potential as a holographic, luminescent, ionexchange and laser medium. It is promising for creating highperformance elements and devices of a new generation of photonics. Objective. The aim of the work was to generalize and demonstrate in the form of a review the wide possibilities of photothermorefractive glasses for photonics problems, including for recording volume holographic optical elements. Methodology. The review includes an analysis of Russian and foreign literary sources (original and review articles, conference proceedings, patents, monographs and dissertations). Main results. The review includes a historical note on the creation of photothermorefractive glasses, a mechanism for changing the refractive index during photothermally induced crystallization of photothermorefractive glass used to record phase holograms. The review considers the properties of photothermorefractive glasses and holograms based on them, including their advantages and disadvantages, as well as technologies for modifying photothermorefractive glasses. The review contains a large amount of graphic material illustrating the covered topics. Practical value. Examples of the use of holographic optical elements based on photothermorefractive glass both in Russia and abroad are given. The prospects for using holographic optical elements based on photothermorefractive glasses to create a new generation of laser technology are shown.
Acknowledgment: the work was carried out as part of the ITMO University project "Priority 2030".
photothermorefractive glass, photothermoinduced crystallization, volumetric Bragg grating, holographic optical element, refractive index modulation
OCIS codes: 160.2750, 160.5320, 050.7330
References:-
-
-
- Pierson J.E., Stookey S.D. Method for making photosensitive colored glasses // US Patent № 4057408. 1977.
- Pierson J.E., Stookey S.D. Photosensitive colored glasses // US Patent № 4017318. 1977.
- Stookey S.D., Beall G.H., Pierson J.E. Full-color photosensitive glass // J. Appl. Phys. 1978. V. 49. № 10. P. 5114–5123. https://doi.org/10.1063/1.324458
- Stookey S.D., Beall G.H., Pierson J.I. Lichtempfindliches glas mit massiver farbug // F. M.-Feinwerktech Mes. 1978. Bd. 86. № 8. S. 387–390.
- Borrelli N.F. Photosensitive glass and glass-ceramics. Boca Raton: CRC Press, 2016. 245 p.
- Anoshkina E.V., Evdoseeva I.A., Panysheva E.I., et al. Precipitation of a microcrystalline phase in a polychromatic glass // Glass Physics and Chemistry. 1994. V. 20. № 1. P. 50–57.
- Dotsenko A.V., Efremov A.M., Zakharov V.K., et al. Absorption spectra of polychromatic glass [in Russian] // Glass Physics and Chemistry. 1985. V. 11. № 5. P. 592–594.
- Panysheva E.I., Tunimanova I.V., Tsekhomskiĭ V.A. A study of coloring in polychromatic glasses [in Russian] // Glass Physics and Chemistry. 1990. V. 16. № 2. P. 239–244.
- Panysheva E.I., Tunimanova I.V., Tsekhomskii V.A. Effect of matrix composition on the properties of polychromatic glass [in Russian] // Glass Physics and Chemistry. 1991. V. 17. № 6. P 891–898.
- Panysheva E.I., Tunimanova I.V. The role of fluorine ions in the polychromatic process // Glass Physics and Chemistry. 1996. V. 22. № 2. P. 125–131.
- Nikonorov N.V. Photo-thermo-refractive glass: History, properties, applications in holography, sensing and laser technique [in Russian] // XVII Internat. Conf. on Holography and Applied Optical Technologies — HOLOEXPO-2020 (Abstracts of reports). Moscow, Russia. 2020. P. 48‒55.
- Borgman V.A., Glebov L.B., Nikonorov N.V., et al. Photothermorefractive effect in silicate-glasses [in Russian] // Reports of the Academy of Sciences of the USSR. 1989. V. 309. № 2. P. 336‒339.
- Glebov L.B., Nikonorov N.V., Panysheva E.I., et al. New possibilities of photosensitive glass-ceramic materials for optical recording of information [in Russian] // All-Union Conf. Optical Memory Problems (Abstracts of reports). Moscow, 1990. P. 22‒23.
- Glebov L.B., Nikonorov N.V., Petrovskii G.T, et al. Photothermorefractive effect in silicate-glasses [in Russian] // VIII All-Union Conf. Interaction of Optical Radiation with Matter (Abstracts of reports). Leningrad, 1990. V. 1. P. 104.
- Glebov L.B., Nikonorov N.V., Petrovsky G.T., et al. Formation of optical elements by photo-thermo-induced crystallization of glass // Proc. SPIE: Optical Radiation Interaction with Matter. Leningrad, Russian Federation. 1991. V. 1440. P. 24–35. https://doi.org/10.1117/12.48131
- Berezhnoi A.I. Glass-ceramics and photo-glass-ceramics [in Russian]. M.: Mashinostroenie Publisher, 1966. 348 p.
- Nikonorov N.V., Panysheva E.I., Savvin V.V., et al. Multichromatic glasses — a new medium for optical recording of information [in Russian] // All-Union Conf. on Optical Imaging and Recording Media (Abstracts of reports). Leningrad, 1990. V. 2. P. 48.
- Glebov L.B., Nikonorov N.V., Panysheva E.I., et al. Multichromatic glasses — new materials for recording volume phase holograms [in Russian] // Reports of the Academy of Sciences of the USSR. 1990. V. 314. № 4 P. 849‒853.
- Kuchinsky S.A., Nikonorov N.V., Panysheva E.I., et al. Properties of volume phase holograms on polychromatic glasses // Opt. Spectrosc. 1991. V. 70. № 6. P. 757‒760.
- Glebov L.B., Nikonorov N.V., Panysheva E.I., et al. New ways to use photosensitive glasses for recording volume phase holograms // Opt. Spectrosc. 1992. V. 73. № 2. P. 237–241.
- Glebov L.B., Nikonorov N.V., Panysheva E.I., et al. Photo-thermo-refractive glass [in Russian] // Proc. VII All-Union Conf. on Radiation Physics and Chemistry of Inorganic Materials. Riga, 1989. V. 527.
- Nacharov A.P., Nikonorov N.V., Sidorov A.I., et al. Influence of ultraviolet irradiation and heat treatment on the morphology of silver nanoparticles in photothermorefractive glasses // Glass Physics and Chemistry. 2008. V. 34. № 6. P 693–699. https://doi.org/10.1134/S1087659608060060
- Zlatov A.S., Korzinin Yu.L., Nikonorov N.V. Obtaining multiplex holograms on photo-thermo-refractive glass [in Russian] // Scientific and technical bulletin of the St. Petersburg State University of Information Technologies, Mechanics and Optics. 2010. № 4. P. 120.
- Zlatov A. S., Ivanov S. A., Prikazov M. Yu., et al. Effect of heat treatment on the change in the refractive index of volumetric phase holograms recorded on photo-thermo-refractive glass [in Russian] // Scientific and technical bulletin of the St. Petersburg State University of Information Technologies, Mechanics and Optics. 2010. № 4. P. 121.
- Ivanov S.A., Ignatiev A.I., Nikonorov N.V., et al. Holographic characteristics of a modified photothermorefractive glass // J. Opt. Technol. 2014. V. 81. № 6. P. 356–360. https://doi.org/10.1364/JOT.81.000356
- Dubrovin V.D., Ignatiev A.I., Nevedomskii V.M., et al. The influence of synthesis conditions and ultraviolet irradiation on the morphology and concentration of silver nanocrystals in photothermo-refractive glasses // Glass Technol. Part A. 2014. V. 55. № 6. P. 191–195.
- Ivanov S.A., Ignatiev A.I., Nikonorov N.V. Advances in photo-thermo-refractive glass composition modifications // Holography: Advances and Modern Trends IV. Prague, Czech Republic, 2015. V. 9508. P. 109–114. https://doi.org/10.1117/12.2178651
- Ivanov S.A., Ignatiev A.I., Nikonorov N.V., et al. Characteristics of PTR glass with novel modified composition // Radiophys. Quantum El. 2015. V. 57. № 8. P. 659–664. https://doi.org/10.1007/s11141-015-9551-z
- Nikonorov N., Aseev V., Dubrovin V., et al. Design and fabrication of optical devices based on new polyfunctional photo-thermo-refractive glasses // 4th Internat. Conf. Photonics, Optics and Laser Technology (PHOTOPTICS). Rome, Italy. 27–29 February 2016. P. 18–25.
- Nikonorov N.V. New photo-thermo-refractive glasses for recording volume holograms: Properties, technologies and applications [in Russian] // XIII Internat. Conf. on Holography and Applied Optical Technologies — HOLOEXPO-2016. (Abstracts of reports). Yaroslavl, Russia. P. 68‒70.
- Ivanov S.A., Doan. V.B., Ignatiev A.I., et al. Features of recording superimposed holograms in photo-thermo-refractive glass [in Russian] // Sci. Tech. J. Inf. Technol. Mech. Opt. 2016. V. 16. № 3. P. 428‒435.
- Nikonorov N., Ivanov S., Dubrovin V., Ignatiev A. New photo-thermo-refractive glasses for holographic optical elements: Properties and applications // Holographic materials and optical systems / Eds. Nayadenova I., Nazarova D., Babeva T. InTech. 2017. P. 435–461.
- Nikonorov N., Aseev V., Dubrovin V., et al. Photonic, plasmonic, fluidic, and luminescent devices based on new polyfunctional photo–thermo-refractive glass // Optics, photonics and laser technology / Eds. Ribeiro P.A., Raposo M. Cham: Springer, 2018. P. 83–113.
- Nikonorov N.V., Ivanov S.A., Pichugin I.S. Photo-thermo-refractive glasses for new applications in holography, metrology and laser technology [in Russian] // XV Internat. Conf. on Holography and Applied Optical Technologies — HOLOEXPO-2018. (Abstracts of reports). Nizhny Novgorod, Russia. September 11–13. 2018. P. 43‒44.
- Ivanov S.A., Kozlova D.A., Nikonorov N.V. Fine structure of a core-shell system in photo-thermo-refractive glass // Holography: Advances and Modern Trends VI. Prague, Czech Republic. 2019. V. 11030. P. 187–194. https://doi.org/10.1117/12.2523024
- Kuzmin D.V., Zheleznov V.Yu., Odinokov S.B., et al. Recording of diffractive optical elements on the surface of PTR glass by a femtosecond laser [in Russian] // XVI Internat. Conf. on Holography and Applied Optical Technologies — HOLOEXPO-2019. (Abstracts of reports). St. Petersburg, Russia. 2019. P. 253‒257.
- Ivanov S., Musikhina E., Nikonorov N. Study of optical diffraction in Bragg and intermediate regime for gratings on PTR glass // Proc. SPIE. 2020. V. 11367. P. 113670I. https://doi.org/10.1117/12.2555575
- Nikonorov N. V., Ivanov S. A., Fedorov Yu. K., et al. Progress in the technology of synthesis and modification of photo-thermo-refractive glasses for recording volume Bragg gratings [in Russian] // XVIII Internat. Conf. on Holography and Applied Optical Technologies — HOLOEXPO-2021. (Abstracts of reports). Gelendzhik, Russia. 2021. P. 285‒289.
- Efimov O.M., Glebov L.B., Glebova L.N., et al. High-efficiency Bragg gratings in photothermorefractive glass // Appl. Opt. 1999. V. 38. № 4. P. 619–627. https://doi.org/10.1364/AO.38.000619
- Efimov O.M., Glebov L.B., Smirnov V.I. High-frequency Bragg gratings in a photothermorefractive glass. // Opt. Lett. 2000. V. 25. № 23. P. 1693–1695. https://doi.org/10.1364/OL.25.001693
- Glebov L.B. Photochromic and photo-thermo-refractive (PTR) glasses // Encyclopedia of smart materials / NY: John Wiley & Sons, 2002. P. 770–780.
- Cardinal T., Efimov O.M., Francois-Saint-Cyr H.G., et al. Comparative study of photo-induced variations of X-ray diffraction and refractive index in photo-thermo-refractive glass // J. Non-Cryst. Solids. 2003. V. 325. № 1–3. P. 275–281. https://doi.org/10.1016/S0022-3093(03)00310-7
- Ciapurin I.V., Glebov L.B., Smirnov V.I. Modeling of phase volume diffractive gratings, part 1: Transmitting sinusoidal uniform gratings // Opt. Eng. 2006. V. 45. № 1. P. 015802. https://doi.org/10.1117/1.2159470
- Santran S., Martinez-Rosas M., Canioni L., et al. Nonlinear refractive index of photo-thermo-refractive glass // Opt. Mater. 2006. V. 28. № 4. P. 401–407. https://doi.org/10.1016/j.optmat.2005.02.004
- Glebov L.B. Photosensitive holographic glass — new approach to creation of high power lasers // Phys. Chem. Glasses-B. 2007. V. 48. № 3. P. 123–128.
- Lumeau J., Glebova L., Glebov L.B. Influence of UV-exposure on the crystallization and optical properties of photo-thermo-refractive glass // J. Non-Cryst. Solids. 2008. V. 354. № 2–9. P. 425–430. https://doi.org/10.1016/j.jnoncrysol.2007.06.082
- Glebov L.B. Volume holographic elements in a photo-thermo-refractive glass // J. Holography and Speckle. 2009. V. 5. № 1. P. 77–84. https://doi.org/10.1166/jhs.2009.011
- Andrusyak O., Canioni L., Cohanoschi I., et al. Cross-correlation technique for dispersion characterization of chirped volume Bragg gratings // Appl. Opt. 2009. V. 48. № 30. P. 5786–5792. https://doi.org/10.1364/AO.48.005786
- Souza G.P., Fokin V.M., Zanotto E.D., et al. Micro and nanostructures in partially crystallised photothermorefractive glass // Phys. Chem. Glasses-B. 2009. V. 50. № 5. P. 311–320.
- Lumeau J., Glebova L., Golubkov V., et al. Origin of crystallization-induced refractive index changes in photo-thermo-refractive glass // Opt. Mater. 2009. V. 32. № 1. P. 139–146. https://doi.org/10.1016/j.optmat.2009.07.007
- Andrusyak O., Smirnov V., Venus G., et al. Beam combining of lasers with high spectral density using volume Bragg gratings // Opt. Commun. 2009. V. 282. № 13. P. 2560–2563. https://doi.org/10.1016/j.optcom.2009.03.019
- Vorobiev N.S., Glebov L.B., Smirnov V.I., et al. Generation of Stark spectral components in Nd:YAP and Nd:YAG lasers by using volume Bragg gratings // Quant. Electron.+. 2009. V. 39. № 1. P. 43. https://doi.org/10.1070/qe2009v039n01abeh013943
- Smirnov V.I., Lumeau J., Mokhov S., et al. Ultranarrow bandwidth moiré reflecting Bragg gratings recorded in photo-thermo-refractive glass // Opt. Lett. 2010. V. 35. № 4. P. 592–594. https://doi.org/10.1364/OL.35.000592
- Fokin V.M., Souza G.P., Zanotto E.D., et al. Sodium fluoride solubility and crystallization in photo-thermo-refractive glass // J. Am. Ceram. Soc. 2010. V. 93. № 3. P. 716–721. https://doi.org/10.1111/j.1551-2916.2009.03478.x
- Lumeau J., Glebova L., Glebov L.B. Near-IR absorption in high-purity photothermorefractive glass and holographic optical elements: Measurement and application for high-energy lasers // Appl. Opt. 2011. V. 50. № 30. P. 5905–5911. https://doi.org/10.1364/AO.50.005905
- Souza G.P., Fokin V.M., Rodrigues C.F., et al. Liquid–liquid phase separation in photo‐thermo‐refractive glass // J. Am. Ceram. Soc. 2011. V. 94. № 1. P. 145–150. (https://doi.org/10.1111/j.1551-2916.2010.04053.x)
- Souza G.P., Fokin V.M., Baptista C.A., et al. Effect of bromine on NaF crystallization in photo-thermo-refractive glass // J. Am. Ceram. Soc. 2011. V. 94. № 9. P. 2906–2911. https://doi.org/10.1111/j.1551-2916.2011.04691.x
- Lumeau J., Koc C., Mokhun O., et al. Single resonance monolithic Fabry–Perot filters formed by volume Bragg gratings and multilayer dielectric mirrors // Opt. Lett. 2011. V. 36. № 10. P. 1773–1775. https://doi.org/10.1364/OL.36.001773
- Hemmer M., Joly Y., Glebov L.B., et al. Sub-5-pm linewidth, 130-nm-tuning of a coupled-cavity Ti:sapphire oscillator via volume Bragg grating-based feedback // Appl. Phys. B. 2012. V. 106. № 4. P. 803–807. https://doi.org/10.1007/s00340-012-4904-1
- SeGall M., Rotar V., Lumeau J., et al. Binary volume phase masks in photo-thermo-refractive glass // Opt. Lett. 2012. V. 37. № 7. P. 1190–1192. https://doi.org/10.1364/OL.37.001190
- Drachenberg D.R., Andrusyak O., Venus G., et al. Ultimate efficiency of spectral beam combining by volume Bragg gratings // Appl. Opt. 2013. V. 52. № 30. P. 7233–7242. https://doi.org/10.1364/AO.52.007233
- Hofmann P., Amezcua-Correa R., Antonio-Lopez E., et al. Strong Bragg gratings in highly photosensitive photo-thermo-refractive-glass optical fiber // IEEE Photonis Tec. L. 2012. V. 25. № 1. P. 25–28. https://doi.org/10.1109/LPT.2012.2227308
- Lumeau J., Glebova L., Glebov L.B. Absorption and scattering in photo-thermo-refractive glass induced by UV-exposure and thermal development // Opt. Mater. 2014. V. 36. № 3. P. 621–627. https://doi.org/10.1016/j.optmat.2013.10.043
- Glebov L.B., Smirnov V., Rotari E., et al. Volume-chirped Bragg gratings: Monolithic components for stretching and compression of ultrashort laser pulses // Opt. Eng. 2014. V. 53. № 5. P. 051514. https://doi.org/10.1117/1.OE.53.5.051514
- Magon C.J., Gonzalez J.P.D., Lima J.F., et al. Electron paramagnetic resonance (EPR) studies on the photo-thermo ionization process of photo-thermo-refractive glasses // J. Non-Cryst. Solids. 2016. V. 452. P. 320–324. https://doi.org/10.1016/j.jnoncrysol.2016.09.012
- Zhang X., Yuan X., Wu S., et al. Two-dimensional angular filtering by volume Bragg gratings in photothermorefractive glass // Opt. Lett. 2011. V. 36. № 11. P. 2167–2169. https://doi.org/10.1364/OL.36.002167
- Wang P., Lu M., Li W., et al. Crystallization and absorption properties of novel photo-thermal refractive glasses with the addition of B2O3 // J. Non-Cryst. Solids. 2013. V. 368. P. 55–62. https://doi.org/10.1016/j.jnoncrysol.2013.03.002
- Zhang Y.J., Zhang G.D., Chen C.L., et al. Transmission volume phase holographic gratings in photo-thermo-refractive glass written with femtosecond laser Bessel beams // Opt. Mater. Exp. 2016. V. 6. № 11. P. 3491–3499. https://doi.org/10.1364/OME.6.003491
- Zhang Y.J., Zhang G.D., Bai J., et al. Double line and tubular depressed cladding waveguides written by femtosecond laser irradiation in PTR glass // Opt. Mater. Exp. 2017. V. 7. № 7. P. 2626–2635. https://doi.org/10.1364/OME.7.002626
- Wang Y., Shen X.L., Zheng R.L., et al. Optical planar waveguides in photo-thermal-refractive glasses fabricated by single-or double-energy carbon ion implantation // Opt. Eng. 2018. V. 57. № 1. P. 017103. https://doi.org/10.1117/1.OE.57.1.017103
- Chen P., Jin Y., He D., et al. Design and fabrication of multiplexed volume Bragg gratings as angle amplifiers in high power beam scanning system // Opt. Exp. 2018. V. 26. № 19. P. 25336–25346. https://doi.org/10.1364/OE.26.025336
- Dai H., Jin Y., Chen P., et al. Broadband chirped volume Bragg grating for one-hundred-femtosecond pulse compression // 10th Internat. Conf. Thin Film Physics and Applications (TFPA 2019). Qingdao, China. 2019. V. 11064. P. 116–121. https://doi.org/10.1117/12.2540586
- Li P., Zheng R., Yao X., et al. Preparation and optical properties of boron-doped Si-Na-Al-Zn photo-thermal-refractive glass // Mater. Sci. Eng. 2019. V. 677. № 2. P. 022117. https://doi.org/10.1088/1757-899x/677/2/022117
- Xu X., Li Z., Zheng T., et al. Effects of different compositions on the properties of rare earth doped photorefractive glass-ceramics // Ferroelectrics. 2019. V. 547. № 1. P. 68–76. https://doi.org/10.1080/00150193.2019.1592485
- Wang X., Zhang G., Zhang Y., et al. Photochemical response triggered by ultrashort laser Gaussian-Bessel beams in photo-thermo-refractive glass // Opt. Exp. 2020. V. 28. № 21. P. 31093–31102. https://doi.org/10.1364/OE.401905
- Zhang Y., Wang X., Zhang G., et al. Nano-crystal and microstructure formation in fluoride photo-thermo-refractive glass using chirp-controlled ultrafast laser Bessel beams // Nanomaterials. 2021. V. 11. № 6. P. 1432. https://doi.org/10.3390/nano11061432
- Zhao J., Jin Y., Kong F., et al. Optical vortex switch based on multiplexed volume gratings with high diffraction efficiency // Opt. Exp. 2021. V. 29. № 21. P. 34293–34301. https://doi.org/10.1364/OE.434584
- Stoica M., Herrmann A., Hein J., et al. UV–vis spectroscopic studies of CaF2 photo-thermo-refractive glass // Opt. Mater. 2016. V. 62. P. 424–432. https://doi.org/10.1016/j.optmat.2016.10.031
- Stoica M., Patzig C., Bocker C., et al. Structural evolution of CaF2 nanoparticles during the photo-induced crystallization of a Na2O–K2O–CaO–CaF2–Al2O3–ZnO–SiO2 glass // J. Mater. Sci. 2017. V. 52. № 23. P. 13390–13401. https://doi.org/10.1007/s10853-017-1443-5
- Stoica M., Kracker M., Rüssel C. Photo-induced formation of silver nanoparticles in a new Na2O/K2O/CaO/CaF2/Al2O3/ZnO/SiO2 photo thermal refractive glass: Evidence of Ag-AgBr core shell structures // Opt. Mater. Exp. 2017. V. 7. № 12. P. 4427–4434. https://doi.org/10.1364/OME.7.004427
- Glebov A.L., Mokhun O., Rapaport A., et al. Volume Bragg gratings as ultra-narrow and multiband optical filters // SPIE Micro-Optics. Brussels, Belgium, 2012. V. 8428. P. 42–52. https://doi.org/10.1117/12.923575
- Volodin B.L., Dolgy S.V., Melnik E.D., et al. Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings // Opt. Lett. 2004. V. 29. № 16. P. 1891–1893. https://doi.org/10.1364/OL.29.001891
- Glebov L. High-performance solid-state and fiber lasers controlled by volume Bragg gratings // The Review of Laser Engineering. 2013. V. 41. № 9. P. 684. https://doi.org/10.2184/lsj.41.9_684
- Nikonorov N.V., Panysheva E.I., Tunimanova I.V., et al. Influence of glass composition on the refractive index change upon photothermoinduced crystallization // Glass Physics and Chemistry. 2001. V.27. № 3. P. 241–249. https://doi.org/10.1023/A:1011392301107
-
-
-
-
-
- Glebova L., Lumeau J., Klimov M., et al. Role of bromine on the thermal and optical properties of photo-thermo-refractive glass // J. Non-Cryst. Solids. 2008. V. 354. № 2–9. P. 456–461. https://doi.org/10.1016/j.jnoncrysol.2007.06.086
- Souza G.P., Fokin V.M., Baptista C.A., et al. Effect of bromine on NaF crystallization in photo-thermorefractive glass // J. Am. Ceram. Soc. 2011. V. 94. № 9. P. 2906–2911. https://doi.org/10.1111/j.1551-2916.2011.04691.x
- Nikonorov N., Sidorov A. Silver nanoparticles in silicate glasses: Synthesis, modification and destruction // Metal Nanoparticles / NY: Nova Science Publisher, 2018. P. 61–123.
- Lumeau J., Zanotto E.D. A review of the photo-thermal mechanism and crystallization of photo-thermo-refractive (PTR) glass // Internat. Mater. Rev. 2017. V. 62. № 6. P. 348–366. https://doi.org/10.1080/09506608.2016.1264132
- Nikonorov N.V., Sidorov A.I., Tsekhomskii V.A. Silver nanoparticles in oxide glasses: Technologies and properties // Silver Nanoparticles / Ed. Perez D.P. Vukovar, Croatia: In-Tech, 2010. P. 177–199. https://doi.org/10.5772/8506
- Nikonorov N., Sidorov A., Tsekhomsky V. Properties and structure of oxide glasses: Technologies and properties // Silver Nanoparticles / Ed. Perez D.P. Vukovar, Croatia: In-Tech, 2010. P. 143–159. https://doi.org/10.5772/8506
- Efimov A.M., Ignatiev A.I., Nikonorov N.V., et al. Quantitative UV–VIS spectroscopic studies of photo-thermo-refractive glasses. II. Manifestations of Ce3+ and Ce (IV) valence states in the UV absorption spectrum of cerium-doped photo-thermo-refractive matrix glasses // J. Non-Cryst. Solids. 2013. V. 361. P. 26–37. https://doi.org/10.1016/j.jnoncrysol.2012.10.024
- Efimov A.M., Ignatiev A.I., Nikonorov N.V., et al. Spectral components that form UV absorption spectrum of the Ce3+ and Ce(IV) valence states in a matrix of photo-thermo-refractive glasses // Opt. Spectrosc.+. 2011. V. 111. № 3. Р. 426‒433. https://doi.org/10.1134/S0030400X11090050
- Efimov A.M., Ignatiev A.I., Nikonorov N.V., et al. Ultraviolet-VIS spectroscopic manifestations of silver in photo-thermo-refractive glass matrices // Glass Technol. Part A. 2013. V. 54. № 4. P. 155–164.
- Efimov A.M., Ignatiev A.I., Nikonorov N.V., et al. Photo‐thermo-refractive glasses: Effects of dopants on their ultraviolet absorption spectra // Internat. J. Appl. Glass Sci. 2015. V. 6. № 2. P. 109–127. https://doi.org/10.1111/ijag.12116
- Sidorov A.I., Nikonorov N.V., Ignatiev A.I., et al. The effect of UV irradiation and thermal treatments on structural properties of silver-containing photo-thermo-refractive glasses: Studies by Raman spectroscopy // Opt. Mater. 2019. V. 98. P. 109422. https://doi.org/10.1016/j.optmat.2019.109422
- Dubrovin V., Nikonorov N., Ignatiev A. Bromide photo-thermo-refractive glass for volume Bragg gratings and waveguide structure recording // Opt. Mater. Exp. 2017. V. 7. № 7. P. 2280–2292. https://doi.org/10.1364/OME.7.002280
- Dubrovin V.D., Ignatiev A.I., Nikonorov N.V. Chloride photo-thermo-refractive glasses // Opt. Mater. Exp. 2016. V. 6. № 5. P. 1701–1713. https://doi.org/10.1364/OME.6.001701
- Ivanov S.A., Nikonorov N.V., Dubrovin V.D., et al. Analysis of the hologram recording on the novel chloride photo-thermo-refractive glass // Holography: Advances and Modern Trends V. Proc. SPIE. 2017. V. 10233. P. 79–86. https://doi.org/10.1117/12.2265433
- Ignatiev A.I., Nikonorov N.V., Sidorov A.I., et al. Influence of UV irradiation and heat treatment on the luminescence of molecular silver clusters in photo-thermo-refractive glasses // Opt. Spectrosc.+. 2013. V. 114. № 5. Р. 769–774. https://doi.org/10.1134/S0030400X13030132
- Dubrovin V.D., Ignatiev A.I., Nikonorov N.V., et al. Luminescence of silver molecular clusters in photo-thermo-refractive glasses // Opt. Mater. 2014. V. 36. № 4. P. 753–759. https://doi.org/10.1016/j.optmat.2013.11.018
- Dubrovin V.D., Ignatiev A.I., Nikonorov N.V., et al. Influence of halogenides on luminescence from silver molecular clusters in photothermorefractive glasses // Technical Physics. J. 2014. V. 84. № 5. P. 733‒735.
-
-
-
-
-
- Klyukin D.A., Sidorov A.I., Ignatiev A.I., et al. Luminescence quenching and recovering in photo-thermo-refractive silver-ion doped glasses // Opt. Mater. 2014. P. 38. P. 233–237. https://doi.org/10.1016/j.optmat.2014.10.037
- Ignatiev A.I., Klyukin D.A., Leontieva V.S., et al. Formation of luminescent centers in photo-thermo-refractive silicate glasses under the action of UV laser nanosecond pulses // Opt. Mater. Exp. 2015. V. 5. № 7. P. 1635–1646. https://doi.org/10.1364/OME.5.001635
- Ignatiev A.I., Ignatiev D.A., Nikonorov N.V., et al. The influence of UV laser radiation on the absorption and luminescence of photo-thermo-refractive glasses containing silver ions // Opt. Spectrosc.+. 2015. V 119. № 2. P. 238–242. https://doi.org/10.1134/S0030400X15080093
- Klyukin D.A., Sidorov A.I., Ignatiev A.I., et al. Formation of luminescent centers and nonlinear optical effects in silver-containing glasses under femtosecond laser pulses // Opt. Spectrosc.+. 2015. V. 119. № 3. P. 456–459. https://doi.org/10.1134/S0030400X15090143
- Klyukin D.A., Dubrovin V.D., Pshenova A.S., et al. Formation of luminescent and non-luminescent silver nanoparticles in silicate glasses by near-infrared femtosecond laser pulses and subsequent thermal treatment: the role of halogenides // Opt. Eng. 2016. V. 55. № 6. P. 067101. https://doi.org/10.1117/1.OE.55.6.067101
- Klyukin D., Silvennoinen M., Svirko Y., et al. Fluorescent clusters in chloride photo-thermo-refractive glass by femtosecond laser bleaching of Ag nanoparticles // Opt. Exp. 2017. V. 25. P. 12944–12951. https://doi.org/10.1364/OE.25.012944
- Nikonorov N.V., Petrov V.M. Holographic optical components based on photorefractive crystals and glasses: Comparative analysis and development prospects // Opt. Spectrosc. 2021. V. 129. № 4. Р. 530–537. https://doi.org/10.1134/S0030400X21040172
- Ivanov S., Dubrovin V., Nikonorov N., et al. Origin of refractive index change in photo-thermo-refractive glass // J. Non-Cryst. Solids. 2019. V. 521. P. 119496. https://doi.org/10.1016/j.jnoncrysol.2019.119496
- Efimov O.M., Glebov L.B., Papernov S., et al. Laser-induced damage of photo-thermo-refractive glasses for optical holographic element writing // Laser-Induced Damage in Opt. Mater. 1999. V. 3578. P. 564–575. https://doi.org/10.1117/12.344406
- Hofmann P., Amezcua-Correa R., Antonio-Lopez E., et al. Strong Bragg gratings in highly photosensitive photo-thermo-refractive-glass optical fiber // IEEE Photonis Tec. L. 2012. V. 25. № 1. P. 25–28. https://doi.org/10.1109/LPT.2012.2227308
- Hofmann P., Amezcua-Correa R., Antonio-Lopez E., et al. Photo-thermo-refractive glass fibers // Workshop on Specialty Optical Fibers and their Applications. Optical Society of America. 2013. P. F1.2.
- Nasser K., Ivanov S.A., Kharisova R.D., et al. A novel photo-thermo-refractive glass with chlorine instead of bromine for holographic application // Ceram. Int. 2022. V. 48. № 18. P. 26750–26757. https://doi.org/10.1016/j.ceramint.2022.05.372
- Ignatiev A.I., Ignatiev D.A., Nikonorov N.V. Photodestruction of silver nanoparticles in photo-thermo-refractive glasses [in Russian] // Sci. Tech. J. Inf. Technol. Mech. Opt. 2013. V. 85 № 3. P. 158‒159.
- Ignatiev D.A., Ignatiev A.I., Nikonorov N.V., et al. Reversible photodestruction of silver nanoparticles in photo-thermo-refractive glasses [in Russian] // Sci. Tech. J. Inf. Technol. Mech. Opt. 2014. V. 89. № 1. P. 206.
- Ignatiev D.A., Ignatiev A.I., Nikonorov N.V., et al. Interaction of femtosecond laser radiation with silver nanoparticles in photo-thermo-refractive glasses // J. Opt. Technol.+. 2015. V. 82. № 11. P. 734–737. https://doi.org/10.1364/JOT.82.000734
- Ignatiev A., Ignatiev D., Klyukin D., et al. Influence of 532 and 355 nm nanosecond laser pulses on photodestruction of silver nanoparticles in photo-thermo-refractive glasses // 2016 4th Internat. Conf. Photonics, Optics and Laser Technology (PHOTOPTICS). Rome, Italy. 27–29 February 2016. P. 243–247.
- Klyukin D., Ivanov S., Krykova V., et al. Thermal stability of volume Bragg gratings in chloride photo-thermo-refractive glass after femtosecond laser bleaching // Opt. Lett. 2018. V. 43. № 5. P. 1083–1086. https://doi.org/10.1364/OL.43.001083
- Shirshnev P.S., Alvarez R.A., Glebov L.B. Long-wavelength optical absorption edge of photo-thermo-refractive glass // Opt. Mater. Exp. 2021. V. 11. № 9. P. 2883–2891. https://doi.org/10.1364/OME.427974
- Kompan F., Venus G., Glebova L., et al. Photo-thermo-refractive glass with sensitivity to visible and near IR radiation // Opt. Mater. Exp. 2016. V. 6. № 12. P. 3881–3891. https://doi.org/10.1364/OME.6.003881
- Kompan F., Divliansky I., Smirnov V., et al. Complex holographic elements in photo-thermo-refractive glass for the visible spectral region // Components and Packaging for Laser Systems III. San Francisco, California, United States. 2017. V. 10085. P. 175–185. https://doi.org/10.1117/12.2252766
- Kompan F.M. Holographic optical elements for visible light applications in photo-thermo-refractive glass // PhD thesis. UCF, Orlando, Florida, USA. 2019. 201 p.
- Chen X., Xia Z. Synthesis and color-tunable luminescence of Ce3+, Tb3+ codoped Sr6YSc (BO3)6 phosphor // J. Sol. State Lighting. 2014. V. 1. № 1. P. 1–10. https://doi.org/10.1186/2196-1107-1-4
- Zhang Y., Li D., Pun E.Y.B., et al. Cerium and terbium ions doped strontium alumosilicate polycrystalline phosphors // J. Lumin. 2017. V. 187. P. 85–91. https://doi.org/10.1016/j.jlumin.2017.02.065
- Borsella E., Battaglin G., Garcia M.A., et al. Structural incorporation of silver in soda-lime glass by the ion-exchange process: A photoluminescence spectroscopy study // Appl. Phys. A-Mater. 2000. V. 71. № 2. P. 125–132. https://doi.org/10.1007/PL00021106
- Sgibnev Y.M., Nikonorov N.V., Vasilev V.N., et al. Optical gradient waveguides in photo-thermo-refractive glass formed by ion exchange method // J. Lightwave Technol. 2015. V. 33. № 17. P. 3730–3735. https://doi.org/10.1109/JLT.2015.2456239
- Sgibnev E.M., Ignatiev A.I., Nikonorov N.V., et al. Effects of silver ion exchange and subsequent treatments on the UV–VIS spectra of silicate glasses. I. Undoped, CeO2-doped, and (CeO2 + Sb2O3)-codoped photo-thermo-refractive matrix glasses // J. Non-Cryst. Solids. 2013. V. 378. P. 213–226. https://doi.org/10.1016/j.jnoncrysol.2013.07.010
- Ramaswamy R.V., Srivastava R. Ion-exchanged glass waveguides: A review // J. Lightwave Technol. 1988. V. 6. № 6. P. 984–1000. https://doi.org/10.1109/50.4090
- Nikonorov N.V., Petrovskii G.T. Ion-exchanged glasses in integrated optics: The current state of research and prospects (a review) // Glass Physics and Chemistry. 1999. V. 25. № 1. P. 16–55.
- Najafi S.I. Introduction to glass integrated optics. Boston: Artech House, 1992. 170 p.
- Sgibnev E. Optical and spectral properties of silver ion-exchange layers of photo-thermo-refractive glasses [in Russian] // PhD thesis. ITMO, St. Petersburg. 2017. 175 p. (in Russian)
- Nikonorov N.V. Effect of ion exchange on the physicochemical properties of glasses and surface waveguides // Glass Physics and Chemistry1999. V. 25. № 3. P. 271–308.
- Gy R. Ion exchange for glass strengthening // Mater. Sci. Eng. B-Adv. 2008. V. 149. № 2. P. 159–165. https://doi.org/10.1016/j.mseb.2007.11.029
- Sgibnev Y.M., Nikonorov N.V., Ignatiev A.I. Luminescence of silver clusters in ion-exchanged cerium-doped photo-thermo-refractive glasses // J. Lumin. 2016. V. 176. P. 292–297. https://doi.org/10.1016/j.jlumin.2016.04.001
- Ignatiev A.I., Nikonorov N.V., Ignatiev D.A., et al. Luminescent properties of silver clusters formed by ion exchange in photo-thermo-refractive glass // Sci. Tech. J. Inf. Technol. Mech. Opt. 2016. V. 16. №. 6. P. 1031–1037.
- Sgibnev Y.M., Nikonorov N.V., Ignatiev A.I., et al. Spectral-luminescent properties of silver molecular clusters and nanoparticles formed by ion exchange in photo-thermo-refractive glasses with antimony // Opt. Spectrosc. 2017. V. 122. № 1. P. 133‒138. https://doi.org/10.1134/S0030400X1701026X
- Sgibnev Y.M., Nikonorov N.V., Ignatiev A.I. High efficient luminescence of silver clusters in ion-exchanged antimony-doped photo-thermo-refractive glasses: Influence of antimony content and heat treatment parameters // J. Lumin. 2017. V. 188. P. 172–179. https://doi.org/10.1016/j.jlumin.2017.04.028
- Marasanov D.V., Mironov L.Y., Sgibnev Y.M., et al. Luminescence and energy transfer mechanisms in photo-thermo-refractive glasses co-doped with silver molecular clusters and Eu3+ // Phys. Chem. Chem. Phys. 2020. V. 22. № 40. P. 23342–23350. https://doi.org/10.1039/D0CP02786C
- Sgibnev Y., Asamoah B., Nikonorov N.V., et al. Tunable photoluminescence of silver molecular clusters formed in Na+-Ag+ ion-exchanged antimony-doped photo-thermo-refractive glass matrix // J. Lumin. 2020. V. 226. P. 117411. https://doi.org/10.1016/j.jlumin.2020.117411
- Sgibnev Y., Nikonorov N., Ignatiev A. Governing functionality of silver ion-exchanged photo-thermo-refractive glass matrix by small additives // Appl. Sci. 2021. V. 11. № 9. P. 3891. https://doi.org/10.3390/app11093891
- Vostokov A.V., Ignatiev A.I., Nikonorov N.V., et al. Effect of electron irradiation on the formation of silver nanoclusters in photo-thermo-refractive glasses // Technical Physics Letters. 2009. V. 35. № 17. P. 58‒62.
- Podsvirov O.A., Ignatiev A.I., Nashchekin A.V., et al. Modification of Ag containing photo-thermo-refractive glasses induced by electron-beam irradiation // Nuclear Instruments and Methods in Physics Research B. 2010. V. 268. P. 3103–3106. https://doi.org/10.1016/j.nimb.2010.05.061
- Vostokov A.V., Verzin I.A., Ignatiev A.I., et al. Comparison of the kinetics of the formation of silver nanoparticles in photo-thermo-refractive glass after ultraviolet and electron irradiation // Opt. Spectrosc. 2010. V.109. № 3. P. 366‒371. https://doi.org/10.1134/S0030400X10090092
- Stookey S.D. Chemical machining of photosensitive glass // Ind. Eng. Chem. 1953. V. 45. № 1. P. 115–118.
- Abgrall P., Gue A.M. Lab-on-chip technologies: Making a microfluidic network and coupling it into a complete microsystem — a review // J. Micromech. Microeng. 2007. V. 17. № 5. P. R15. https://doi.org/10.1088/0960-1317/17/5/R01
- Kösters M., Hsieh H.-T., Psaltis D., et al. Holography in commercially available photoetchable glasses // Appl. Opt. 2005. V. 44. № 17. P. 3399–3402. https://doi.org/10.1364/AO.44.003399
- Ignatiev A.I., Nikonorov N.V., Sorokina M.G. Kinetics of chemical etching of photo-thermo-refractive glass and nanoglass-ceramics based on it [in Russian] // Scientific and technical bulletin of the St. Petersburg State University of Information Technologies, Mechanics and Optics. 2011. V. 73. № 3. P. 29‒33.
- Sgibnev Y., Nikonorov N., Ignatiev A., et al. Photostructurable photo-thermo-refractive glass // Opt. Exp. 2016. V. 24. № 5. P. 4563–4572. https://doi.org/10.1364/OE.24.004563
- Kogelnik H., Shank C.V. Stimulated emission in a periodic structure // Appl. Phys. Lett. 1971. V. 18. № 4. P. 152–154. https://doi.org/10.1063/1.1653605
- Nakamura M., Yariv A., Yen H.W., et al. Optically pumped GaAs surface laser with corrugation feedback // Appl. Phys. Lett. 1973. V. 22. № 10. P. 515–516. https://doi.org/10.1063/1.1654490
- Chukharev A.V. Spectral and luminescent properties of erbium photo-thermo-refractive glasses for integrated optical amplifiers and lasers [in Russian] // PhD thesis. ITMO University, St. Petersburg. 2001. 148 p.
-
-
-
-
-
- Aseev V.A., Nikonorov N.V. Spectral-luminescent properties of photo- thermo-refractive nanoglass-ceramics doped with ytterbium and erbium ions // J. Opt. Technol. 2008. V. 75. № 10. P. 676–681. https://doi.org/10.1364/JOT.75.000676
- Nikonorov N., Aseev V. Holographic optical elements and devices based on polyfunctional photo-thermo-refractive glass // 2009 Internat. Conf. Optical Instruments and Technology: Optical Systems and Modern Optoelectronic Instruments. Shanghai, China. 2009. V. 7506. P. 181–189. https://doi.org/10.1117/12.838459
- Aseev V.A., Nikonorov N.V., Przhevuskii A.K. Photo-thermo-refractive nanoglassceramics doped with ytterbium and erbium ions for microchip laser // 14th Internat. Conf. Laser Optics. St. Petersburg, Russia. 2010. P. 38.
- Nikonorov N., Aseev V., Ignatiev A., et al. New polyfunctional photo-thermo-refractive glasses for photonics applications // Technical Digest of 7th Internat. Conf. Optics-photonics Design & Fabrication. 2010. V. 10. P. 209–210.
- Aseev V.A. Spectral-luminescent properties of laser highly concentrated ytterbium-erbium glasses and nanostructured glass-ceramics [in Russian] // PhD thesis. ITMO University, St. Petersburg. 2011. 195 p
- Glebova L., Lumeau J., Glebov L. B. Photo-thermo-refractive glass co-doped with Nd3+ as a new laser medium // Opt. Mater. 2011. V. 33. № 12. P. 1970–1974. https://doi.org/10.1016/j.optmat.2011.03.044
- Sato Y., Taira T., Smirnov V., et al. Continuous-wave diode-pumped laser action of Nd3+-doped photo-thermo-refractive glass // Opt. Lett. 2011. V. 36. № 12. P. 2257–2259. https://doi.org/10.1364/OL.36.002257
- Ryasnyanskiy A., Vorobiev N., Smirnov V., et al. DBR and DFB lasers in neodymium-and ytterbium-doped photo-thermo-refractive glasses // Opt. Lett. 2014. V. 39. № 7. P. 2156–2159. https://doi.org/10.1364/OL.39.002156
- Ivanov S.A., Aseev V.A. Resonator free Er-Yb laser based on photo-thermo-refractive (PTR) glass // Proc. SPIE. 2014. V. 8959. P. 89591E. https://doi.org/10.1117/12.2037660
- Ivanov S.A. Laser and optical properties of photo-thermo-refractive glasses activated by rare-earth ions [in Russian] // PhD thesis. ITMO University, St. Petersburg. 2017. 143 p.
- Nikonorov N., Ivanov S.A., Kozlova D.A., et al. Effect of rare-earth-dopants on Bragg gratings recording in PTR glasses // Proc. SPIE. 2017. V. 10233. P. 102330P. https://doi.org/10.1117/12.2265716
- Nikonorov N.V., Ivanov S., Kozlova D., et al. Rare earth doped photo-thermo-refractive glasses for monolithic integration of lasers and volume Bragg gratings // Proc. SPIE. 2019. V. 11030. P. 102–109. https://doi.org/10.1117/12.2523013
- Nikonorov N.V., Ivanov S.A., Nasser K., et al. Holographic and laser properties of photo-thermo-refractive glasses activated by rare-earth ions [in Russian] // XVI Internat. Conf. on Holography and Applied Optical Technologies — HOLOEXPO-2019. (Abstracts of reports). St. Petersburg, Russia. 2019. P. 60–63.
- Nasser K., Aseev V., Ivanov S., et al. Optical, spectroscopic properties and Judd–Ofelt analysis of Nd3+-doped photo-thermo-refractive glass // J. Lumin. 2019. V. 213. P. 255–262. https://doi.org/10.1016/j.jlumin.2019.05.022
- Nasser K., Aseev V., Ignatiev A., et al. Erbium spectral-luminescent characteristics in bromide-fluoride photo-thermo-refractive glasses // Sci. Tech. J. Inf. Technol. Mech. Opt. 2020. V. 20. № 4. P. 520–524. https://doi.org/10.17586/2226-1494-2020-20-4-520-524
- Nasser K., Aseev V., Ivanov S., et al. Spectroscopic and laser properties of erbium and ytterbium co-doped photo-thermo-refractive glass // Ceram. Int. 2020. V. 46. № 16. P. 26282–26288. https://doi.org/10.1016/j.ceramint.2020.02.271
- Nasser K., Aseev V.A., Ivanov S.A., et al. Comprehensive study of spectroscopic and holographic properties of the chlorine-containing photo-thermo-refractive glass doped with neodymium ions // Opt. Mater. 2022. V. 134. P. 113108. https://doi.org/10.1016/j.optmat.2022.113108
- Nasser K., Nikonorov N.V., Ignatiev A.I., et al. Influence of rare earth ions on holographic properties of chlorine-containing photo-thermo-refractive glass [in Russian] // XIX Internat. Conf. on Holography and Applied Optical Technologies — HOLOEXPO-2022 Science and Practice. (Abstracts of reports). St. Petersburg, Russia. 2022. P. 316‒321.
- Efimov O.M., Glebov L.B., Glebova L.N., et al. Process for production of high efficiency volume diffractive elements in photo-thermo-refractive glass // US Patent № 6586141. 2003.
- Efimov O.M., Glebov L.B., Smirnov V.I. High efficiency volume diffractive elements in photo-thermo-refractive glass // US Patent № 6673497. 2004.
- Electronic resource URL: www.OptiGrate.com/
- Venus G.B., Sevian A., Smirnov V.I., et al. High-brightness narrow-line laser diode source with volume Bragg-grating feedback // High-power diode laser technology and applications. San Jose, California, United States / Proc. SPIE. March 2005. V. 5711. P. 166–176. https://doi.org/10.1117/12.590425
- Glebov L.B. High brightness laser design based on volume Bragg gratings // Laser source and system technology for defense and security II. Orlando (Kissimmee), Florida, United States / Proc. SPIE. May 2006. V. 6216. P. 6216-01‒2. https://doi.org/10.1117/12.667196
- Venus G., Glebov L., Rotar V. et al. Volume Bragg semiconductor lasers with near diffraction limited divergence // Laser source and system technology for defense and security II. Orlando (Kissimmee), Florida, United States / Proc. SPIE. May 2006. V. 6216. P. 6216-12–18. https://doi.org/10.1117/12.666193
- Chung T.Y., Rapaport A., Smirnov V. et al. Solid-state laser spectral narrowing using a volumetric photo-thermo-refractive Bragg grating cavity mirror // Opt. Lett. 2006. V. 31. № 2. P. 229–231. https://doi.org/10.1364/OL.31.000229
- Ciapurin I., Smirnov V., Glebov L. High-density spectral beam combining by thick PTR Bragg gratings // Solid state and diode lasers. Technical review. Albuquerque, New Mexico, United States / Proc. SPIE. 2004. P. 116–124.
- Andrusyak O., Smirnov V., Venus G., et al. Spectral combining and coherent coupling of lasers by volume Bragg gratings // IEEE J. Sel. Top. Quant. 2009. V. 15. № 2. P. 344–353. https://doi.org/10.1109/JSTQE.2009.2012438
- Andrusyak O. Dense spectral beam combining with volume Bragg gratings in photo-thermo-refractive glass // PhD thesis. 2009. UCF, Orlando. 168 p.
- Andrusyak O., Smirnov V., Venus G. Applications of volume Bragg gratings for spectral control and beam combining of high power fiber lasers // Fiber lasers VI: Technology, systems, and applications. San Jose, California, United States / Proc. SPIE. 2009. V. 7195. P. 393–403. https://doi.org/10.1117/12.813402
- Ott D., Divliansky I., Anderson B. et al. Scaling the spectral beam combining channels in a multiplexed volume Bragg grating // Opt. Exp. 2013. V. 21. № 24. P. 29620–29627. https://doi.org/10.1364/OE.21.029620
- Chang G., Rever M., Smirnov V., et al. Femtosecond Yb-fiber chirped-pulse amplification system based on chirped-volume Bragg gratings // Opt. Lett. 2009. V. 34. № 19. P. 2952–2954. https://doi.org/10.1364/OL.34.002952
- Ivanov S.A., Nikonorov N.V., Ignatiev A.I., et al. Narrowing of the emission spectra of high-power laser diodes with a volume Bragg grating recorded in photo-thermo-refractive glass // Semiconductors. 2016. V. 50. № 6. P. 819–823. https://doi.org/10.1134/S1063782616060087
- Angervaks A.E., Ivanov S.A., Klimentev S.I., et al. Chirped volume Bragg grating recording in photo-thermo-refractive glass // J. Phys.: Conf. Series. 2018. V. 1062. № 1. P. 012017. https://doi.org/10.1088/1742-6596/1062/1/012017
- Ivanov S.A., Angervaks A.E., Doan V., et al. Holographic prism based on photo-thermo-refractive glass // Proc. SPIE. 2017. V. 10329. P. 103292Z. https://doi.org/10.1134/S0030400X17120025
- Angervaks A.E., Gorokhovskii K.S., Granovskii V.A., et al. Holographic prism made from photo-thermo-refractive glass: requirements and possibilities // Opt. Spectrosc. 2017. V. 123. № 6. P. 970–976. https://doi.org/10.1134/S0030400X17120025
- Doan V.B., Ivanov S.A., Okun R.A., et al. Analysis of errors in recording and reading of a holographic prism on photo-thermo-refractive glass // Opt. Spectrosc. 2018. V. 124. № 6. P. 895–900. https://doi.org/10.1134/S0030400X18060231
- Angervaks A.E., Gorokhovsky K.S., Granovskii V.A., et al. Holographic prism based on photo-thermo-refractive glass: new facilities for metrological application // Proceedings. Optical Fabrication, Testing, and Metrology VI. Frankfurt, Germany. 2018. V. 10692. P. 58–65. https://doi.org/10.1117/12.2312436
- Doan Van Bak Optical compact flat angle measure based on multiplex holographic Bragg gratings in photo-thermo-refractive glass for angular positioning systems [in Russian] // PhD thesis. ITMO University. St. Petersburg. 2018. 109 p.
- Ivanov S.A., Angervaks A.E., Shcheulin A.S. Application of photo-thermo-refractive glass as a holographic medium for holographic collimator gun sights // Proc. SPIE. 2014. V. 9131. P. 91311B. https://doi.org/10.1117/12.2052160
- Ivanov S.A., Angervaks A.E., Shcheulin A.S., et al. Recording holographic marks for telescopic systems in photo-thermo-refractive glass // Opt. Spectrosc.+. 2014. V. 117. № 6. P. 971–976. https://doi.org/10.1134/S0030400X1412011X
- Musikhina E.S., Ivanov S.A. Axial multiplexing of volume Bragg gratings with a common Bragg angle in photo-thermo-refractive glass [in Russian] // XIX Internat. Conf. on Holography and Applied Optical Technologies — HOLOEXPO-2022 Science and Practice. (Abstracts of reports). St. Petersburg, Russia. 2022. P. 138‒141.
- Odinokov S., Shishova M., Markin V., et al. Augmented reality display based on photo-thermo-refractive glass planar waveguide // Opt. Exp. 2020. V. 28. № 12. P. 17581–17594. https://doi.org/10.1364/OE.395273
- Ivanov S.A., Musikhina E.S., Nikonorov N.V. Light-guide optical combiner on photo-thermo-refractive glass with Bragg gratings for helmet-mounted displays [in Russian] // XIX Internat. Conf. on Holography and Applied Optical Technologies — HOLOEXPO-2022 Science and Practice. (Abstracts of reports). St. Petersburg, Russia. 2022. P. 165–167.
-
-