ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-03-68-100

УДК: 54-161.6, 535.421

Photo-thermo-refractive glass — promising photonics material (a review)

For Russian citation (Opticheskii Zhurnal):

Никоноров Н.В., Иванов С.А., Мусихина Е.С. Фототерморефрактивное стекло — перспективный материал фотоники (обзор) // Оптический журнал. 2023. Т. 90. № 3. С. 68–100. http://doi.org/10.17586/1023-5086-2023-90-03-68-100

 

Nikonorov N.V., Ivanov S.A., Musikhina E.S. Photo-thermo-refractive glass — promising photonics material (a review) [in Russian] // Opticheskii Zhurnal. 2023. V. 90. № 3. P. 68–100. http://doi.org/10.17586/1023-5086-2023-90-03-68-100

For citation (Journal of Optical Technology):

N. V. Nikonorov, S. A. Ivanov, and E. S. Musikhina, "Photo-thermo-refractive glass: a promising photonics material [Review]," Journal of Optical Technology. 90(3), 142-160 (2023). https://doi.org/10.1364/JOT.90.000142

Abstract:

Subject of study. Photo­thermo­refractive glass is a multifunctional material that is in high demand today in the photonics market, which has great potential as a holographic, luminescent, ion­exchange and laser medium. It is promising for creating high­performance elements and devices of a new generation of photonics. Objective. The aim of the work was to generalize and demonstrate in the form of a review the wide possibilities of photo­thermo­refractive glasses for photonics problems, including for recording volume holographic optical elements. Methodology. The review includes an analysis of Russian and foreign literary sources (original and review articles, conference proceedings, patents, monographs and dissertations). Main results. The review includes a historical note on the creation of photo­thermo­refractive glasses, a mechanism for changing the refractive index during photo­thermally induced crystallization of photo­thermo­refractive glass used to record phase holograms. The review considers the properties of photo­thermo­refractive glasses and holograms based on them, including their advantages and disadvantages, as well as technologies for modifying photo­thermo­refractive glasses. The review contains a large amount of graphic material illustrating the covered topics. Practical value. Examples of the use of holographic optical elements based on photo­thermo­refractive glass both in Russia and abroad are given. The prospects for using holographic optical elements based on photo­thermo­refractive glasses to create a new generation of laser technology are shown.

 

Acknowledgment: the work was carried out as part of the ITMO University project "Priority 2030".

Keywords:

photo­thermo­refractive glass, photo­thermo­induced crystallization, volumetric Bragg grating, holographic optical element, refractive index modulation

OCIS codes: 160.2750, 160.5320, 050.7330

References:
        1. Pierson J.E., Stookey S.D. Method for making photosensitive colored glasses // US Patent № 4057408. 1977.
        2. Pierson J.E., Stookey S.D. Photosensitive colored glasses // US Patent № 4017318. 1977.
        3. Stookey S.D., Beall G.H., Pierson J.E. Full-color photosensitive glass // J. Appl. Phys. 1978. V. 49. № 10. P. 5114–5123. https://doi.org/10.1063/1.324458
        4. Stookey S.D., Beall G.H., Pierson J.I. Lichtempfindliches glas mit massiver farbug // F. M.-Feinwerktech Mes. 1978. Bd. 86. № 8. S. 387–390.
        5. Borrelli N.F. Photosensitive glass and glass-ceramics. Boca Raton: CRC Press, 2016. 245 p.
        6. Anoshkina E.V., Evdoseeva I.A., Panysheva E.I., et al. Precipitation of a microcrystalline phase in a polychromatic glass // Glass Physics and Chemistry. 1994. V. 20. № 1. P. 50–57.
        7. Dotsenko A.V., Efremov A.M., Zakharov V.K., et al. Absorption spectra of polychromatic glass [in Russian] // Glass Physics and Chemistry. 1985. V. 11. № 5. P. 592–594.
        8. Panysheva E.I., Tunimanova I.V., Tsekhomskiĭ V.A. A study of coloring in polychromatic glasses [in Russian] // Glass Physics and Chemistry. 1990. V. 16. № 2. P. 239–244.
        9. Panysheva E.I., Tunimanova I.V., Tsekhomskii V.A. Effect of matrix composition on the properties of polychromatic glass [in Russian] // Glass Physics and Chemistry. 1991. V. 17. № 6. P 891–898.
        10. Panysheva E.I., Tunimanova I.V. The role of fluorine ions in the polychromatic process // Glass Physics and Chemistry. 1996. V. 22. № 2. P. 125–131.
        11. Nikonorov N.V. Photo-thermo-refractive glass: History, properties, applications in holography, sensing and laser technique [in Russian] // XVII Internat. Conf. on Holography and Applied Optical Technologies — HOLOEXPO-2020 (Abstracts of reports). Moscow, Russia. 2020. P. 48‒55.
        12. Borgman V.A., Glebov L.B., Nikonorov N.V., et al. Photothermorefractive effect in silicate-glasses [in Russian] // Reports of the Academy of Sciences of the USSR. 1989. V. 309. № 2. P. 336‒339.
        13. Glebov L.B., Nikonorov N.V., Panysheva E.I., et al. New possibilities of photosensitive glass-ceramic materials for optical recording of information [in Russian] // All-Union Conf. Optical Memory Problems (Abstracts of reports). Moscow, 1990. P. 22‒23.
        14. Glebov L.B., Nikonorov N.V., Petrovskii G.T, et al. Photothermorefractive effect in silicate-glasses [in Russian] // VIII All-Union Conf. Interaction of Optical Radiation with Matter (Abstracts of reports). Leningrad, 1990. V. 1. P. 104.
        15. Glebov L.B., Nikonorov N.V., Petrovsky G.T., et al. Formation of optical elements by photo-thermo-induced crystallization of glass // Proc. SPIE: Optical Radiation Interaction with Matter. Leningrad, Russian Federation. 1991. V. 1440. P. 24–35. https://doi.org/10.1117/12.48131
        16. Berezhnoi A.I. Glass-ceramics and photo-glass-ceramics [in Russian]. M.: Mashinostroenie Publisher, 1966. 348 p.
        17. Nikonorov N.V., Panysheva E.I., Savvin V.V., et al. Multichromatic glasses — a new medium for optical recording of information [in Russian] // All-Union Conf. on Optical Imaging and Recording Media (Abstracts of reports). Leningrad, 1990. V. 2. P. 48.
        18.  Glebov L.B., Nikonorov N.V., Panysheva E.I., et al. Multichromatic glasses — new materials for recording volume phase holograms [in Russian] // Reports of the Academy of Sciences of the USSR. 1990. V. 314. № 4 P. 849‒853.
        19. Kuchinsky S.A., Nikonorov N.V., Panysheva E.I., et al. Properties of volume phase holograms on polychromatic glasses // Opt. Spectrosc. 1991. V. 70. № 6. P. 757‒760.
        20. Glebov L.B., Nikonorov N.V., Panysheva E.I., et al. New ways to use photosensitive glasses for recording volume phase holograms // Opt. Spectrosc. 1992. V. 73. № 2. P. 237–241.
        21. Glebov L.B., Nikonorov N.V., Panysheva E.I., et al. Photo-thermo-refractive glass [in Russian] // Proc. VII All-Union Conf. on Radiation Physics and Chemistry of Inorganic Materials. Riga, 1989. V. 527.
        22. Nacharov A.P., Nikonorov N.V., Sidorov A.I., et al. Influence of ultraviolet irradiation and heat treatment on the morphology of silver nanoparticles in photothermorefractive glasses // Glass Physics and Chemistry. 2008. V. 34. № 6. P 693–699. https://doi.org/10.1134/S1087659608060060
        23. Zlatov A.S., Korzinin Yu.L., Nikonorov N.V. Obtaining multiplex holograms on photo-thermo-refractive glass [in Russian] // Scientific and technical bulletin of the St. Petersburg State University of Information Technologies, Mechanics and Optics. 2010. № 4. P. 120.
        24. Zlatov A. S., Ivanov S. A., Prikazov M. Yu., et al. Effect of heat treatment on the change in the refractive index of volumetric phase holograms recorded on photo-thermo-refractive glass [in Russian] // Scientific and technical bulletin of the St. Petersburg State University of Information Technologies, Mechanics and Optics. 2010. № 4. P. 121.
        25. Ivanov S.A., Ignatiev A.I., Nikonorov N.V., et al. Holographic characteristics of a modified photothermorefractive glass // J. Opt. Technol. 2014. V. 81. № 6. P. 356–360. https://doi.org/10.1364/JOT.81.000356
        26. Dubrovin V.D., Ignatiev A.I., Nevedomskii V.M., et al. The influence of synthesis conditions and ultraviolet irradiation on the morphology and concentration of silver nanocrystals in photothermo-refractive glasses // Glass Technol. Part A. 2014. V. 55. № 6. P. 191–195.
        27. Ivanov S.A., Ignatiev A.I., Nikonorov N.V. Advances in photo-thermo-refractive glass composition modifications // Holography: Advances and Modern Trends IV. Prague, Czech Republic, 2015. V. 9508. P. 109–114. https://doi.org/10.1117/12.2178651
        28. Ivanov S.A., Ignatiev A.I., Nikonorov N.V., et al. Characteristics of PTR glass with novel modified composition // Radiophys. Quantum El. 2015. V. 57. № 8. P. 659–664. https://doi.org/10.1007/s11141-015-9551-z
        29. Nikonorov N., Aseev V., Dubrovin V., et al. Design and fabrication of optical devices based on new polyfunctional photo-thermo-refractive glasses // 4th Internat. Conf. Photonics, Optics and Laser Technology (PHOTOPTICS). Rome, Italy. 27–29 February 2016. P. 18–25.
        30. Nikonorov N.V. New photo-thermo-refractive glasses for recording volume holograms: Properties, technologies and applications [in Russian] // XIII Internat. Conf. on Holography and Applied Optical Technologies — HOLOEXPO-2016. (Abstracts of reports). Yaroslavl, Russia. P. 68‒70.
        31. Ivanov S.A., Doan. V.B., Ignatiev A.I., et al. Features of recording superimposed holograms in photo-thermo-refractive glass [in Russian] // Sci. Tech. J. Inf. Technol. Mech. Opt. 2016. V. 16. № 3. P. 428‒435.
        32. Nikonorov N., Ivanov S., Dubrovin V., Ignatiev A. New photo-thermo-refractive glasses for holographic optical elements: Properties and applications // Holographic materials and optical systems / Eds. Nayadenova I., Nazarova D., Babeva T. InTech. 2017. P. 435–461.
        33. Nikonorov N., Aseev V., Dubrovin V., et al. Photonic, plasmonic, fluidic, and luminescent devices based on new polyfunctional photo–thermo-refractive glass // Optics, photonics and laser technology / Eds. Ribeiro P.A., Raposo M. Cham: Springer, 2018. P. 83–113.
        34. Nikonorov N.V., Ivanov S.A., Pichugin I.S. Photo-thermo-refractive glasses for new applications in holography, metrology and laser technology [in Russian] // XV Internat. Conf. on Holography and Applied Optical Technologies — HOLOEXPO-2018. (Abstracts of reports). Nizhny Novgorod, Russia. September 11–13. 2018. P. 43‒44.
        35. Ivanov S.A., Kozlova D.A., Nikonorov N.V. Fine structure of a core-shell system in photo-thermo-refractive glass // Holography: Advances and Modern Trends VI. Prague, Czech Republic. 2019. V. 11030. P. 187–194. https://doi.org/10.1117/12.2523024
        36. Kuzmin D.V., Zheleznov V.Yu., Odinokov S.B., et al. Recording of diffractive optical elements on the surface of PTR glass by a femtosecond laser [in Russian] // XVI Internat. Conf. on Holography and Applied Optical Technologies — HOLOEXPO-2019. (Abstracts of reports). St. Petersburg, Russia. 2019. P. 253‒257.
        37. Ivanov S., Musikhina E., Nikonorov N. Study of optical diffraction in Bragg and intermediate regime for gratings on PTR glass // Proc. SPIE. 2020. V. 11367. P. 113670I. https://doi.org/10.1117/12.2555575
        38. Nikonorov N. V., Ivanov S. A., Fedorov Yu. K., et al. Progress in the technology of synthesis and modification of photo-thermo-refractive glasses for recording volume Bragg gratings [in Russian] // XVIII Internat. Conf. on Holography and Applied Optical Technologies — HOLOEXPO-2021. (Abstracts of reports). Gelendzhik, Russia. 2021. P. 285‒289.
        39. Efimov O.M., Glebov L.B., Glebova L.N., et al. High-efficiency Bragg gratings in photothermorefractive glass // Appl. Opt. 1999. V. 38. № 4. P. 619–627. https://doi.org/10.1364/AO.38.000619
        40. Efimov O.M., Glebov L.B., Smirnov V.I. High-frequency Bragg gratings in a photothermorefractive glass. // Opt. Lett. 2000. V. 25. № 23. P. 1693–1695. https://doi.org/10.1364/OL.25.001693
        41. Glebov L.B. Photochromic and photo-thermo-refractive (PTR) glasses // Encyclopedia of smart materials / NY: John Wiley & Sons, 2002. P. 770–780.
        42. Cardinal T., Efimov O.M., Francois-Saint-Cyr H.G., et al. Comparative study of photo-induced variations of X-ray diffraction and refractive index in photo-thermo-refractive glass // J. Non-Cryst. Solids. 2003. V. 325. № 1–3. P. 275–281. https://doi.org/10.1016/S0022-3093(03)00310-7
        43. Ciapurin I.V., Glebov L.B., Smirnov V.I. Modeling of phase volume diffractive gratings, part 1: Transmitting sinusoidal uniform gratings // Opt. Eng. 2006. V. 45. № 1. P. 015802. https://doi.org/10.1117/1.2159470
        44. Santran S., Martinez-Rosas M., Canioni L., et al. Nonlinear refractive index of photo-thermo-refractive glass // Opt. Mater. 2006. V. 28. № 4. P. 401–407. https://doi.org/10.1016/j.optmat.2005.02.004 
        45. Glebov L.B. Photosensitive holographic glass — new approach to creation of high power lasers // Phys. Chem. Glasses-B. 2007. V. 48. № 3. P. 123–128.
        46. Lumeau J., Glebova L., Glebov L.B. Influence of UV-exposure on the crystallization and optical properties of photo-thermo-refractive glass // J. Non-Cryst. Solids. 2008. V. 354. № 2–9. P. 425–430. https://doi.org/10.1016/j.jnoncrysol.2007.06.082
        47. Glebov L.B. Volume holographic elements in a photo-thermo-refractive glass // J. Holography and Speckle. 2009. V. 5. № 1. P. 77–84. https://doi.org/10.1166/jhs.2009.011
        48. Andrusyak O., Canioni L., Cohanoschi I., et al. Cross-correlation technique for dispersion characterization of chirped volume Bragg gratings // Appl. Opt. 2009. V. 48. № 30. P. 5786–5792. https://doi.org/10.1364/AO.48.005786
        49. Souza G.P., Fokin V.M., Zanotto E.D., et al. Micro and nanostructures in partially crystallised photothermorefractive glass // Phys. Chem. Glasses-B. 2009. V. 50. № 5. P. 311–320.
        50. Lumeau J., Glebova L., Golubkov V., et al. Origin of crystallization-induced refractive index changes in photo-thermo-refractive glass // Opt. Mater. 2009. V. 32. № 1. P. 139–146. https://doi.org/10.1016/j.optmat.2009.07.007
        51. Andrusyak O., Smirnov V., Venus G., et al. Beam combining of lasers with high spectral density using volume Bragg gratings // Opt. Commun. 2009. V. 282. № 13. P. 2560–2563. https://doi.org/10.1016/j.optcom.2009.03.019
        52. Vorobiev N.S., Glebov L.B., Smirnov V.I., et al. Generation of Stark spectral components in Nd:YAP and Nd:YAG lasers by using volume Bragg gratings // Quant. Electron.+. 2009. V. 39. № 1. P. 43. https://doi.org/10.1070/qe2009v039n01abeh013943
        53. Smirnov V.I., Lumeau J., Mokhov S., et al. Ultranarrow bandwidth moiré reflecting Bragg gratings recorded in photo-thermo-refractive glass // Opt. Lett. 2010. V. 35. № 4. P. 592–594. https://doi.org/10.1364/OL.35.000592
        54. Fokin V.M., Souza G.P., Zanotto E.D., et al. Sodium fluoride solubility and crystallization in photo-thermo-refractive glass // J. Am. Ceram. Soc. 2010. V. 93. № 3. P. 716–721. https://doi.org/10.1111/j.1551-2916.2009.03478.x
        55. Lumeau J., Glebova L., Glebov L.B. Near-IR absorption in high-purity photothermorefractive glass and holographic optical elements: Measurement and application for high-energy lasers // Appl. Opt. 2011. V. 50. № 30. P. 5905–5911. https://doi.org/10.1364/AO.50.005905
        56. Souza G.P., Fokin V.M., Rodrigues C.F., et al. Liquid–liquid phase separation in photo‐thermo‐refractive glass // J. Am. Ceram. Soc. 2011. V. 94. № 1. P. 145–150. (https://doi.org/10.1111/j.1551-2916.2010.04053.x)
        57. Souza G.P., Fokin V.M., Baptista C.A., et al. Effect of bromine on NaF crystallization in photo-thermo-refractive glass // J. Am. Ceram. Soc. 2011. V. 94. № 9. P. 2906–2911. https://doi.org/10.1111/j.1551-2916.2011.04691.x
        58. Lumeau J., Koc C., Mokhun O., et al. Single resonance monolithic Fabry–Perot filters formed by volume Bragg gratings and multilayer dielectric mirrors // Opt. Lett. 2011. V. 36. № 10. P. 1773–1775. https://doi.org/10.1364/OL.36.001773
        59. Hemmer M., Joly Y., Glebov L.B., et al. Sub-5-pm linewidth, 130-nm-tuning of a coupled-cavity Ti:sapphire oscillator via volume Bragg grating-based feedback // Appl. Phys. B. 2012. V. 106. № 4. P. 803–807. https://doi.org/10.1007/s00340-012-4904-1
        60. SeGall M., Rotar V., Lumeau J., et al. Binary volume phase masks in photo-thermo-refractive glass // Opt. Lett. 2012. V. 37. № 7. P. 1190–1192. https://doi.org/10.1364/OL.37.001190
        61. Drachenberg D.R., Andrusyak O., Venus G., et al. Ultimate efficiency of spectral beam combining by volume Bragg gratings // Appl. Opt. 2013. V. 52. № 30. P. 7233–7242. https://doi.org/10.1364/AO.52.007233
        62. Hofmann P., Amezcua-Correa R., Antonio-Lopez E., et al. Strong Bragg gratings in highly photosensitive photo-thermo-refractive-glass optical fiber // IEEE Photonis Tec. L. 2012. V. 25. № 1. P. 25–28. https://doi.org/10.1109/LPT.2012.2227308
        63. Lumeau J., Glebova L., Glebov L.B. Absorption and scattering in photo-thermo-refractive glass induced by UV-exposure and thermal development // Opt. Mater. 2014. V. 36. № 3. P. 621–627. https://doi.org/10.1016/j.optmat.2013.10.043
        64. Glebov L.B., Smirnov V., Rotari E., et al. Volume-chirped Bragg gratings: Monolithic components for stretching and compression of ultrashort laser pulses // Opt. Eng. 2014. V. 53. № 5. P. 051514. https://doi.org/10.1117/1.OE.53.5.051514
        65. Magon C.J., Gonzalez J.P.D., Lima J.F., et al. Electron paramagnetic resonance (EPR) studies on the photo-thermo ionization process of photo-thermo-refractive glasses // J. Non-Cryst. Solids. 2016. V. 452. P. 320–324. https://doi.org/10.1016/j.jnoncrysol.2016.09.012
        66. Zhang X., Yuan X., Wu S., et al. Two-dimensional angular filtering by volume Bragg gratings in photothermorefractive glass // Opt. Lett. 2011. V. 36. № 11. P. 2167–2169. https://doi.org/10.1364/OL.36.002167
        67. Wang P., Lu M., Li W., et al. Crystallization and absorption properties of novel photo-thermal refractive glasses with the addition of B2O3 // J. Non-Cryst. Solids. 2013. V. 368. P. 55–62. https://doi.org/10.1016/j.jnoncrysol.2013.03.002
        68. Zhang Y.J., Zhang G.D., Chen C.L., et al. Transmission volume phase holographic gratings in photo-thermo-refractive glass written with femtosecond laser Bessel beams // Opt. Mater. Exp. 2016. V. 6. № 11. P. 3491–3499. https://doi.org/10.1364/OME.6.003491
        69. Zhang Y.J., Zhang G.D., Bai J., et al. Double line and tubular depressed cladding waveguides written by femtosecond laser irradiation in PTR glass // Opt. Mater. Exp. 2017. V. 7. № 7. P. 2626–2635. https://doi.org/10.1364/OME.7.002626
        70. Wang Y., Shen X.L., Zheng R.L., et al. Optical planar waveguides in photo-thermal-refractive glasses fabricated by single-or double-energy carbon ion implantation // Opt. Eng. 2018. V. 57. № 1. P. 017103. https://doi.org/10.1117/1.OE.57.1.017103
        71. Chen P., Jin Y., He D., et al. Design and fabrication of multiplexed volume Bragg gratings as angle amplifiers in high power beam scanning system // Opt. Exp. 2018. V. 26. № 19. P. 25336–25346. https://doi.org/10.1364/OE.26.025336
        72. Dai H., Jin Y., Chen P., et al. Broadband chirped volume Bragg grating for one-hundred-femtosecond pulse compression // 10th Internat. Conf. Thin Film Physics and Applications (TFPA 2019). Qingdao, China. 2019. V. 11064. P. 116–121. https://doi.org/10.1117/12.2540586
        73. Li P., Zheng R., Yao X., et al. Preparation and optical properties of boron-doped Si-Na-Al-Zn photo-thermal-refractive glass // Mater. Sci. Eng. 2019. V. 677. № 2. P. 022117. https://doi.org/10.1088/1757-899x/677/2/022117
        74. Xu X., Li Z., Zheng T., et al. Effects of different compositions on the properties of rare earth doped photorefractive glass-ceramics // Ferroelectrics. 2019. V. 547. № 1. P. 68–76. https://doi.org/10.1080/00150193.2019.1592485
        75. Wang X., Zhang G., Zhang Y., et al. Photochemical response triggered by ultrashort laser Gaussian-Bessel beams in photo-thermo-refractive glass // Opt. Exp. 2020. V. 28. № 21. P. 31093–31102. https://doi.org/10.1364/OE.401905
        76. Zhang Y., Wang X., Zhang G., et al. Nano-crystal and microstructure formation in fluoride photo-thermo-refractive glass using chirp-controlled ultrafast laser Bessel beams // Nanomaterials. 2021. V. 11. № 6. P. 1432. https://doi.org/10.3390/nano11061432
        77. Zhao J., Jin Y., Kong F., et al. Optical vortex switch based on multiplexed volume gratings with high diffraction efficiency // Opt. Exp. 2021. V. 29. № 21. P. 34293–34301. https://doi.org/10.1364/OE.434584
        78. Stoica M., Herrmann A., Hein J., et al. UV–vis spectroscopic studies of CaF2 photo-thermo-refractive glass // Opt. Mater. 2016. V. 62. P. 424–432. https://doi.org/10.1016/j.optmat.2016.10.031
        79. Stoica M., Patzig C., Bocker C., et al. Structural evolution of CaF2 nanoparticles during the photo-induced crystallization of a Na2O–K2O–CaO–CaF2–Al2O3–ZnO–SiO2 glass // J. Mater. Sci. 2017. V. 52. № 23. P. 13390–13401. https://doi.org/10.1007/s10853-017-1443-5
        80. Stoica M., Kracker M., Rüssel C. Photo-induced formation of silver nanoparticles in a new Na2O/K2O/CaO/CaF2/Al2O3/ZnO/SiO2 photo thermal refractive glass: Evidence of Ag-AgBr core shell structures // Opt. Mater. Exp. 2017. V. 7. № 12. P. 4427–4434. https://doi.org/10.1364/OME.7.004427
        81. Glebov A.L., Mokhun O., Rapaport A., et al. Volume Bragg gratings as ultra-narrow and multiband optical filters // SPIE Micro-Optics. Brussels, Belgium, 2012. V. 8428. P. 42–52. https://doi.org/10.1117/12.923575
        82. Volodin B.L., Dolgy S.V., Melnik E.D., et al. Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings // Opt. Lett. 2004. V. 29. № 16. P. 1891–1893. https://doi.org/10.1364/OL.29.001891
        83. Glebov L. High-performance solid-state and fiber lasers controlled by volume Bragg gratings // The Review of Laser Engineering. 2013. V. 41. № 9. P. 684. https://doi.org/10.2184/lsj.41.9_684
        84. Nikonorov N.V., Panysheva E.I., Tunimanova I.V., et al. Influence of glass composition on the refractive index change upon photothermoinduced crystallization // Glass Physics and Chemistry. 2001. V.27. № 3. P. 241–249. https://doi.org/10.1023/A:1011392301107
        1. Glebova L., Lumeau J., Klimov M., et al. Role of bromine on the thermal and optical properties of photo-thermo-refractive glass // J. Non-Cryst. Solids. 2008. V. 354. № 2–9. P. 456–461. https://doi.org/10.1016/j.jnoncrysol.2007.06.086
        2. Souza G.P., Fokin V.M., Baptista C.A., et al. Effect of bromine on NaF crystallization in photo-thermorefractive glass // J. Am. Ceram. Soc. 2011. V. 94. № 9. P. 2906–2911. https://doi.org/10.1111/j.1551-2916.2011.04691.x
        3. Nikonorov N., Sidorov A. Silver nanoparticles in silicate glasses: Synthesis, modification and destruction // Metal Nanoparticles / NY: Nova Science Publisher, 2018. P. 61–123.
        4. Lumeau J., Zanotto E.D. A review of the photo-thermal mechanism and crystallization of photo-thermo-refractive (PTR) glass // Internat. Mater. Rev. 2017. V. 62. № 6. P. 348–366. https://doi.org/10.1080/09506608.2016.1264132
        5. Nikonorov N.V., Sidorov A.I., Tsekhomskii V.A. Silver nanoparticles in oxide glasses: Technologies and properties // Silver Nanoparticles / Ed. Perez D.P. Vukovar, Croatia: In-Tech, 2010. P. 177–199. https://doi.org/10.5772/8506
        6. Nikonorov N., Sidorov A., Tsekhomsky V. Properties and structure of oxide glasses: Technologies and properties // Silver Nanoparticles / Ed. Perez D.P. Vukovar, Croatia: In-Tech, 2010. P. 143–159. https://doi.org/10.5772/8506
        7. Efimov A.M., Ignatiev A.I., Nikonorov N.V., et al. Quantitative UV–VIS spectroscopic studies of photo-thermo-refractive glasses. II. Manifestations of Ce3+ and Ce (IV) valence states in the UV absorption spectrum of cerium-doped photo-thermo-refractive matrix glasses // J. Non-Cryst. Solids. 2013. V. 361. P. 26–37. https://doi.org/10.1016/j.jnoncrysol.2012.10.024
        8. Efimov A.M., Ignatiev A.I., Nikonorov N.V., et al. Spectral components that form UV absorption spectrum of the Ce3+ and Ce(IV) valence states in a matrix of photo-thermo-refractive glasses // Opt. Spectrosc.+. 2011. V. 111. № 3. Р. 426‒433. https://doi.org/10.1134/S0030400X11090050
        9. Efimov A.M., Ignatiev A.I., Nikonorov N.V., et al. Ultraviolet-VIS spectroscopic manifestations of silver in photo-thermo-refractive glass matrices // Glass Technol. Part A. 2013. V. 54. № 4. P. 155–164.
        10. Efimov A.M., Ignatiev A.I., Nikonorov N.V., et al. Photo‐thermo-refractive glasses: Effects of dopants on their ultraviolet absorption spectra // Internat. J. Appl. Glass Sci. 2015. V. 6. № 2. P. 109–127. https://doi.org/10.1111/ijag.12116
        11. Sidorov A.I., Nikonorov N.V., Ignatiev A.I., et al. The effect of UV irradiation and thermal treatments on structural properties of silver-containing photo-thermo-refractive glasses: Studies by Raman spectroscopy // Opt. Mater. 2019. V. 98. P. 109422. https://doi.org/10.1016/j.optmat.2019.109422
        12. Dubrovin V., Nikonorov N., Ignatiev A. Bromide photo-thermo-refractive glass for volume Bragg gratings and waveguide structure recording // Opt. Mater. Exp. 2017. V. 7. № 7. P. 2280–2292. https://doi.org/10.1364/OME.7.002280
        13. Dubrovin V.D., Ignatiev A.I., Nikonorov N.V. Chloride photo-thermo-refractive glasses // Opt. Mater. Exp. 2016. V. 6. № 5. P. 1701–1713. https://doi.org/10.1364/OME.6.001701
        14. Ivanov S.A., Nikonorov N.V., Dubrovin V.D., et al. Analysis of the hologram recording on the novel chloride photo-thermo-refractive glass // Holography: Advances and Modern Trends V. Proc. SPIE. 2017. V. 10233. P. 79–86. https://doi.org/10.1117/12.2265433
        15. Ignatiev A.I., Nikonorov N.V., Sidorov A.I., et al. Influence of UV irradiation and heat treatment on the luminescence of molecular silver clusters in photo-thermo-refractive glasses // Opt. Spectrosc.+. 2013. V. 114. № 5. Р. 769–774. https://doi.org/10.1134/S0030400X13030132
        16. Dubrovin V.D., Ignatiev A.I., Nikonorov N.V., et al. Luminescence of silver molecular clusters in photo-thermo-refractive glasses // Opt. Mater. 2014. V. 36. № 4. P. 753–759. https://doi.org/10.1016/j.optmat.2013.11.018
        17. Dubrovin V.D., Ignatiev A.I., Nikonorov N.V., et al. Influence of halogenides on luminescence from silver molecular clusters in photothermorefractive glasses // Technical Physics. J. 2014. V. 84. № 5. P. 733‒735.
        1. Klyukin D.A., Sidorov A.I., Ignatiev A.I., et al. Luminescence quenching and recovering in photo-thermo-refractive silver-ion doped glasses // Opt. Mater. 2014. P. 38. P. 233–237. https://doi.org/10.1016/j.optmat.2014.10.037
        2. Ignatiev A.I., Klyukin D.A., Leontieva V.S., et al. Formation of luminescent centers in photo-thermo-refractive silicate glasses under the action of UV laser nanosecond pulses // Opt. Mater. Exp. 2015. V. 5. № 7. P. 1635–1646. https://doi.org/10.1364/OME.5.001635
        3. Ignatiev A.I., Ignatiev D.A., Nikonorov N.V., et al. The influence of UV laser radiation on the absorption and luminescence of photo-thermo-refractive glasses containing silver ions // Opt. Spectrosc.+. 2015. V 119. № 2. P. 238–242. https://doi.org/10.1134/S0030400X15080093
        4. Klyukin D.A., Sidorov A.I., Ignatiev A.I., et al. Formation of luminescent centers and nonlinear optical effects in silver-containing glasses under femtosecond laser pulses // Opt. Spectrosc.+. 2015. V. 119. № 3. P. 456–459. https://doi.org/10.1134/S0030400X15090143
        5. Klyukin D.A., Dubrovin V.D., Pshenova A.S., et al. Formation of luminescent and non-luminescent silver nanoparticles in silicate glasses by near-infrared femtosecond laser pulses and subsequent thermal treatment: the role of halogenides // Opt. Eng. 2016. V. 55. № 6. P. 067101. https://doi.org/10.1117/1.OE.55.6.067101
        6. Klyukin D., Silvennoinen M., Svirko Y., et al. Fluorescent clusters in chloride photo-thermo-refractive glass by femtosecond laser bleaching of Ag nanoparticles // Opt. Exp. 2017. V. 25. P. 12944–12951. https://doi.org/10.1364/OE.25.012944
        7. Nikonorov N.V., Petrov V.M. Holographic optical components based on photorefractive crystals and glasses: Comparative analysis and development prospects // Opt. Spectrosc. 2021. V. 129. № 4. Р. 530–537. https://doi.org/10.1134/S0030400X21040172
        8. Ivanov S., Dubrovin V., Nikonorov N., et al. Origin of refractive index change in photo-thermo-refractive glass // J. Non-Cryst. Solids. 2019. V. 521. P. 119496. https://doi.org/10.1016/j.jnoncrysol.2019.119496
        9. Efimov O.M., Glebov L.B., Papernov S., et al. Laser-induced damage of photo-thermo-refractive glasses for optical holographic element writing // Laser-Induced Damage in Opt. Mater. 1999. V. 3578. P. 564–575. https://doi.org/10.1117/12.344406
        10. Hofmann P., Amezcua-Correa R., Antonio-Lopez E., et al. Strong Bragg gratings in highly photosensitive photo-thermo-refractive-glass optical fiber // IEEE Photonis Tec. L. 2012. V. 25. № 1. P. 25–28. https://doi.org/10.1109/LPT.2012.2227308
        11. Hofmann P., Amezcua-Correa R., Antonio-Lopez E., et al. Photo-thermo-refractive glass fibers // Workshop on Specialty Optical Fibers and their Applications. Optical Society of America. 2013. P. F1.2.
        12. Nasser K., Ivanov S.A., Kharisova R.D., et al. A novel photo-thermo-refractive glass with chlorine instead of bromine for holographic application // Ceram. Int. 2022. V. 48. № 18. P. 26750–26757. https://doi.org/10.1016/j.ceramint.2022.05.372
        13. Ignatiev A.I., Ignatiev D.A., Nikonorov N.V. Photodestruction of silver nanoparticles in photo-thermo-refractive glasses [in Russian] // Sci. Tech. J. Inf. Technol. Mech. Opt. 2013. V. 85 № 3. P. 158‒159.
        14. Ignatiev D.A., Ignatiev A.I., Nikonorov N.V., et al. Reversible photodestruction of silver nanoparticles in photo-thermo-refractive glasses [in Russian] // Sci. Tech. J. Inf. Technol. Mech. Opt. 2014. V. 89. № 1. P. 206.
        15. Ignatiev D.A., Ignatiev A.I., Nikonorov N.V., et al. Interaction of femtosecond laser radiation with silver nanoparticles in photo-thermo-refractive glasses // J. Opt. Technol.+. 2015. V. 82. № 11. P. 734–737. https://doi.org/10.1364/JOT.82.000734
        16. Ignatiev A., Ignatiev D., Klyukin D., et al. Influence of 532 and 355 nm nanosecond laser pulses on photodestruction of silver nanoparticles in photo-thermo-refractive glasses // 2016 4th Internat. Conf. Photonics, Optics and Laser Technology (PHOTOPTICS). Rome, Italy. 27–29 February 2016. P. 243–247.
        17. Klyukin D., Ivanov S., Krykova V., et al. Thermal stability of volume Bragg gratings in chloride photo-thermo-refractive glass after femtosecond laser bleaching // Opt. Lett. 2018. V. 43. № 5. P. 1083–1086. https://doi.org/10.1364/OL.43.001083
        18. Shirshnev P.S., Alvarez R.A., Glebov L.B. Long-wavelength optical absorption edge of photo-thermo-refractive glass // Opt. Mater. Exp. 2021. V. 11. № 9. P. 2883–2891. https://doi.org/10.1364/OME.427974
        19. Kompan F., Venus G., Glebova L., et al. Photo-thermo-refractive glass with sensitivity to visible and near IR radiation // Opt. Mater. Exp. 2016. V. 6. № 12. P. 3881–3891. https://doi.org/10.1364/OME.6.003881
        20. Kompan F., Divliansky I., Smirnov V., et al. Complex holographic elements in photo-thermo-refractive glass for the visible spectral region // Components and Packaging for Laser Systems III. San Francisco, California, United States. 2017. V. 10085. P. 175–185. https://doi.org/10.1117/12.2252766
        21. Kompan F.M. Holographic optical elements for visible light applications in photo-thermo-refractive glass // PhD thesis. UCF, Orlando, Florida, USA. 2019. 201 p.
        22. Chen X., Xia Z. Synthesis and color-tunable luminescence of Ce3+, Tb3+ codoped Sr6YSc (BO3)6 phosphor // J. Sol. State Lighting. 2014. V. 1. № 1. P. 1–10. https://doi.org/10.1186/2196-1107-1-4
        23. Zhang Y., Li D., Pun E.Y.B., et al. Cerium and terbium ions doped strontium alumosilicate polycrystalline phosphors // J. Lumin. 2017. V. 187. P. 85–91. https://doi.org/10.1016/j.jlumin.2017.02.065
        24. Borsella E., Battaglin G., Garcia M.A., et al. Structural incorporation of silver in soda-lime glass by the ion-exchange process: A photoluminescence spectroscopy study // Appl. Phys. A-Mater. 2000. V. 71. № 2. P. 125–132. https://doi.org/10.1007/PL00021106
        25. Sgibnev Y.M., Nikonorov N.V., Vasilev V.N., et al. Optical gradient waveguides in photo-thermo-refractive glass formed by ion exchange method // J. Lightwave Technol. 2015. V. 33. № 17. P. 3730–3735. https://doi.org/10.1109/JLT.2015.2456239
        26. Sgibnev E.M., Ignatiev A.I., Nikonorov N.V., et al. Effects of silver ion exchange and subsequent treatments on the UV–VIS spectra of silicate glasses. I. Undoped, CeO2-doped, and (CeO2 + Sb2O3)-codoped photo-thermo-refractive matrix glasses // J. Non-Cryst. Solids. 2013. V. 378. P. 213–226. https://doi.org/10.1016/j.jnoncrysol.2013.07.010
        27. Ramaswamy R.V., Srivastava R. Ion-exchanged glass waveguides: A review // J. Lightwave Technol. 1988. V. 6. № 6. P. 984–1000. https://doi.org/10.1109/50.4090
        28. Nikonorov N.V., Petrovskii G.T. Ion-exchanged glasses in integrated optics: The current state of research and prospects (a review) // Glass Physics and Chemistry. 1999. V. 25. № 1. P. 16–55.
        29. Najafi S.I. Introduction to glass integrated optics. Boston: Artech House, 1992. 170 p.
        30. Sgibnev E. Optical and spectral properties of silver ion-exchange layers of photo-thermo-refractive glasses [in Russian] // PhD thesis. ITMO, St. Petersburg. 2017. 175 p. (in Russian)
        31. Nikonorov N.V. Effect of ion exchange on the physicochemical properties of glasses and surface waveguides // Glass Physics and Chemistry1999. V. 25. № 3. P. 271–308.
        32. Gy R. Ion exchange for glass strengthening // Mater. Sci. Eng. B-Adv. 2008. V. 149. № 2. P. 159–165. https://doi.org/10.1016/j.mseb.2007.11.029
        33. Sgibnev Y.M., Nikonorov N.V., Ignatiev A.I. Luminescence of silver clusters in ion-exchanged cerium-doped photo-thermo-refractive glasses // J. Lumin. 2016. V. 176. P. 292–297. https://doi.org/10.1016/j.jlumin.2016.04.001
        34. Ignatiev A.I., Nikonorov N.V., Ignatiev D.A., et al. Luminescent properties of silver clusters formed by ion exchange in photo-thermo-refractive glass // Sci. Tech. J. Inf. Technol. Mech. Opt. 2016. V. 16. №. 6. P. 1031–1037.
        35. Sgibnev Y.M., Nikonorov N.V., Ignatiev A.I., et al. Spectral-luminescent properties of silver molecular clusters and nanoparticles formed by ion exchange in photo-thermo-refractive glasses with antimony // Opt. Spectrosc. 2017. V. 122. № 1. P. 133‒138. https://doi.org/10.1134/S0030400X1701026X
        36. Sgibnev Y.M., Nikonorov N.V., Ignatiev A.I. High efficient luminescence of silver clusters in ion-exchanged antimony-doped photo-thermo-refractive glasses: Influence of antimony content and heat treatment parameters // J. Lumin. 2017. V. 188. P. 172–179. https://doi.org/10.1016/j.jlumin.2017.04.028
        37. Marasanov D.V., Mironov L.Y., Sgibnev Y.M., et al. Luminescence and energy transfer mechanisms in photo-thermo-refractive glasses co-doped with silver molecular clusters and Eu3+ // Phys. Chem. Chem. Phys. 2020. V. 22. № 40. P. 23342–23350. https://doi.org/10.1039/D0CP02786C
        38. Sgibnev Y., Asamoah B., Nikonorov N.V., et al. Tunable photoluminescence of silver molecular clusters formed in Na+-Ag+ ion-exchanged antimony-doped photo-thermo-refractive glass matrix // J. Lumin. 2020. V. 226. P. 117411. https://doi.org/10.1016/j.jlumin.2020.117411
        39. Sgibnev Y., Nikonorov N., Ignatiev A. Governing functionality of silver ion-exchanged photo-thermo-refractive glass matrix by small additives // Appl. Sci. 2021. V. 11. № 9. P. 3891. https://doi.org/10.3390/app11093891
        40. Vostokov A.V., Ignatiev A.I., Nikonorov N.V., et al. Effect of electron irradiation on the formation of silver nanoclusters in photo-thermo-refractive glasses // Technical Physics Letters. 2009. V. 35. № 17. P. 58‒62.
        41. Podsvirov O.A., Ignatiev A.I., Nashchekin A.V., et al. Modification of Ag containing photo-thermo-refractive glasses induced by electron-beam irradiation // Nuclear Instruments and Methods in Physics Research B. 2010. V. 268. P. 3103–3106. https://doi.org/10.1016/j.nimb.2010.05.061
        42. Vostokov A.V., Verzin I.A., Ignatiev A.I., et al. Comparison of the kinetics of the formation of silver nanoparticles in photo-thermo-refractive glass after ultraviolet and electron irradiation // Opt. Spectrosc. 2010. V.109. № 3. P. 366‒371. https://doi.org/10.1134/S0030400X10090092
        43. Stookey S.D. Chemical machining of photosensitive glass // Ind. Eng. Chem. 1953. V. 45. № 1. P. 115–118.
        44. Abgrall P., Gue A.M. Lab-on-chip technologies: Making a microfluidic network and coupling it into a complete microsystem — a review // J. Micromech. Microeng. 2007. V. 17. № 5. P. R15. https://doi.org/10.1088/0960-1317/17/5/R01
        45. Kösters M., Hsieh H.-T., Psaltis D., et al. Holography in commercially available photoetchable glasses // Appl. Opt. 2005. V. 44. № 17. P. 3399–3402. https://doi.org/10.1364/AO.44.003399
        46. Ignatiev A.I., Nikonorov N.V., Sorokina M.G. Kinetics of chemical etching of photo-thermo-refractive glass and nanoglass-ceramics based on it [in Russian] // Scientific and technical bulletin of the St. Petersburg State University of Information Technologies, Mechanics and Optics. 2011. V. 73. № 3. P. 29‒33.
        47. Sgibnev Y., Nikonorov N., Ignatiev A., et al. Photostructurable photo-thermo-refractive glass // Opt. Exp. 2016. V. 24. № 5. P. 4563–4572. https://doi.org/10.1364/OE.24.004563
        48. Kogelnik H., Shank C.V. Stimulated emission in a periodic structure // Appl. Phys. Lett. 1971. V. 18. № 4. P. 152–154. https://doi.org/10.1063/1.1653605
        49. Nakamura M., Yariv A., Yen H.W., et al. Optically pumped GaAs surface laser with corrugation feedback // Appl. Phys. Lett. 1973. V. 22. № 10. P. 515–516. https://doi.org/10.1063/1.1654490
        50. Chukharev A.V. Spectral and luminescent properties of erbium photo-thermo-refractive glasses for integrated optical amplifiers and lasers [in Russian] // PhD thesis. ITMO University, St. Petersburg. 2001. 148 p.
        1. Aseev V.A., Nikonorov N.V. Spectral-luminescent properties of photo- thermo-refractive nanoglass-ceramics doped with ytterbium and erbium ions // J. Opt. Technol. 2008. V. 75. № 10. P. 676–681. https://doi.org/10.1364/JOT.75.000676
        2. Nikonorov N., Aseev V. Holographic optical elements and devices based on polyfunctional photo-thermo-refractive glass // 2009 Internat. Conf. Optical Instruments and Technology: Optical Systems and Modern Optoelectronic Instruments. Shanghai, China. 2009. V. 7506. P. 181–189. https://doi.org/10.1117/12.838459
        3. Aseev V.A., Nikonorov N.V., Przhevuskii A.K. Photo-thermo-refractive nanoglassceramics doped with ytterbium and erbium ions for microchip laser // 14th Internat. Conf. Laser Optics. St. Petersburg, Russia. 2010. P. 38.
        4. Nikonorov N., Aseev V., Ignatiev A., et al. New polyfunctional photo-thermo-refractive glasses for photonics applications // Technical Digest of 7th Internat. Conf. Optics-photonics Design & Fabrication. 2010. V. 10. P. 209–210.
        5. Aseev V.A. Spectral-luminescent properties of laser highly concentrated ytterbium-erbium glasses and nanostructured glass-ceramics [in Russian] // PhD thesis. ITMO University, St. Petersburg. 2011. 195 p
        6. Glebova L., Lumeau J., Glebov L. B. Photo-thermo-refractive glass co-doped with Nd3+ as a new laser medium // Opt. Mater. 2011. V. 33. № 12. P. 1970–1974. https://doi.org/10.1016/j.optmat.2011.03.044
        7. Sato Y., Taira T., Smirnov V., et al. Continuous-wave diode-pumped laser action of Nd3+-doped photo-thermo-refractive glass // Opt. Lett. 2011. V. 36. № 12. P. 2257–2259. https://doi.org/10.1364/OL.36.002257
        8. Ryasnyanskiy A., Vorobiev N., Smirnov V., et al. DBR and DFB lasers in neodymium-and ytterbium-doped photo-thermo-refractive glasses // Opt. Lett. 2014. V. 39. № 7. P. 2156–2159. https://doi.org/10.1364/OL.39.002156
        9. Ivanov S.A., Aseev V.A. Resonator free Er-Yb laser based on photo-thermo-refractive (PTR) glass // Proc. SPIE. 2014. V. 8959. P. 89591E. https://doi.org/10.1117/12.2037660
        10. Ivanov S.A. Laser and optical properties of photo-thermo-refractive glasses activated by rare-earth ions [in Russian] // PhD thesis. ITMO University, St. Petersburg. 2017. 143 p.
        11. Nikonorov N., Ivanov S.A., Kozlova D.A., et al. Effect of rare-earth-dopants on Bragg gratings recording in PTR glasses // Proc. SPIE. 2017. V. 10233. P. 102330P. https://doi.org/10.1117/12.2265716
        12. Nikonorov N.V., Ivanov S., Kozlova D., et al. Rare earth doped photo-thermo-refractive glasses for monolithic integration of lasers and volume Bragg gratings // Proc. SPIE. 2019. V. 11030. P. 102–109. https://doi.org/10.1117/12.2523013
        13. Nikonorov N.V., Ivanov S.A., Nasser K., et al. Holographic and laser properties of photo-thermo-refractive glasses activated by rare-earth ions [in Russian] // XVI Internat. Conf. on Holography and Applied Optical Technologies — HOLOEXPO-2019. (Abstracts of reports). St. Petersburg, Russia. 2019. P. 60–63.
        14. Nasser K., Aseev V., Ivanov S., et al. Optical, spectroscopic properties and Judd–Ofelt analysis of Nd3+-doped photo-thermo-refractive glass // J. Lumin. 2019. V. 213. P. 255–262. https://doi.org/10.1016/j.jlumin.2019.05.022
        15.  Nasser K., Aseev V., Ignatiev A., et al. Erbium spectral-luminescent characteristics in bromide-fluoride photo-thermo-refractive glasses // Sci. Tech. J. Inf. Technol. Mech. Opt. 2020. V. 20. № 4. P. 520–524. https://doi.org/10.17586/2226-1494-2020-20-4-520-524
        16. Nasser K., Aseev V., Ivanov S., et al. Spectroscopic and laser properties of erbium and ytterbium co-doped photo-thermo-refractive glass // Ceram. Int. 2020. V. 46. № 16. P. 26282–26288. https://doi.org/10.1016/j.ceramint.2020.02.271
        17. Nasser K., Aseev V.A., Ivanov S.A., et al. Comprehensive study of spectroscopic and holographic properties of the chlorine-containing photo-thermo-refractive glass doped with neodymium ions // Opt. Mater. 2022. V. 134. P. 113108. https://doi.org/10.1016/j.optmat.2022.113108
        18. Nasser K., Nikonorov N.V., Ignatiev A.I., et al. Influence of rare earth ions on holographic properties of chlorine-containing photo-thermo-refractive glass  [in Russian] // XIX Internat. Conf. on Holography and Applied Optical Technologies — HOLOEXPO-2022 Science and Practice. (Abstracts of reports). St. Petersburg, Russia. 2022. P. 316‒321.
        19. Efimov O.M., Glebov L.B., Glebova L.N., et al. Process for production of high efficiency volume diffractive elements in photo-thermo-refractive glass // US Patent № 6586141. 2003.
        20. Efimov O.M., Glebov L.B., Smirnov V.I. High efficiency volume diffractive elements in photo-thermo-refractive glass // US Patent № 6673497. 2004.
        21. Electronic resource URL: www.OptiGrate.com/
        22. Venus G.B., Sevian A., Smirnov V.I., et al. High-brightness narrow-line laser diode source with volume Bragg-grating feedback // High-power diode laser technology and applications. San Jose, California, United States / Proc. SPIE. March 2005. V. 5711. P. 166–176. https://doi.org/10.1117/12.590425
        23. Glebov L.B. High brightness laser design based on volume Bragg gratings // Laser source and system technology for defense and security II. Orlando (Kissimmee), Florida, United States / Proc. SPIE. May 2006. V. 6216. P. 6216-01‒2. https://doi.org/10.1117/12.667196
        24. Venus G., Glebov L., Rotar V. et al. Volume Bragg semiconductor lasers with near diffraction limited divergence // Laser source and system technology for defense and security II. Orlando (Kissimmee), Florida, United States / Proc. SPIE. May 2006. V. 6216. P. 6216-12–18. https://doi.org/10.1117/12.666193
        25. Chung T.Y., Rapaport A., Smirnov V. et al. Solid-state laser spectral narrowing using a volumetric photo-thermo-refractive Bragg grating cavity mirror // Opt. Lett. 2006. V. 31. № 2. P. 229–231. https://doi.org/10.1364/OL.31.000229
        26. Ciapurin I., Smirnov V., Glebov L. High-density spectral beam combining by thick PTR Bragg gratings // Solid state and diode lasers. Technical review. Albuquerque, New Mexico, United States / Proc. SPIE. 2004. P. 116–124.
        27. Andrusyak O., Smirnov V., Venus G., et al. Spectral combining and coherent coupling of lasers by volume Bragg gratings // IEEE J. Sel. Top. Quant. 2009. V. 15. № 2. P. 344–353. https://doi.org/10.1109/JSTQE.2009.2012438
        28. Andrusyak O. Dense spectral beam combining with volume Bragg gratings in photo-thermo-refractive glass // PhD thesis. 2009. UCF, Orlando. 168 p.
        29.   Andrusyak O., Smirnov V., Venus G. Applications of volume Bragg gratings for spectral control and beam combining of high power fiber lasers // Fiber lasers VI: Technology, systems, and applications. San Jose, California, United States / Proc. SPIE. 2009. V. 7195. P. 393–403. https://doi.org/10.1117/12.813402
        30. Ott D., Divliansky I., Anderson B. et al. Scaling the spectral beam combining channels in a multiplexed volume Bragg grating // Opt. Exp. 2013. V. 21. № 24. P. 29620–29627. https://doi.org/10.1364/OE.21.029620
        31. Chang G., Rever M., Smirnov V., et al. Femtosecond Yb-fiber chirped-pulse amplification system based on chirped-volume Bragg gratings // Opt. Lett. 2009. V. 34. № 19. P. 2952–2954. https://doi.org/10.1364/OL.34.002952
        32. Ivanov S.A., Nikonorov N.V., Ignatiev A.I., et al. Narrowing of the emission spectra of high-power laser diodes with a volume Bragg grating recorded in photo-thermo-refractive glass // Semiconductors. 2016. V. 50. № 6. P. 819–823. https://doi.org/10.1134/S1063782616060087
        33. Angervaks A.E., Ivanov S.A., Klimentev S.I., et al. Chirped volume Bragg grating recording in photo-thermo-refractive glass // J. Phys.: Conf. Series. 2018. V. 1062. № 1. P. 012017. https://doi.org/10.1088/1742-6596/1062/1/012017
        34. Ivanov S.A., Angervaks A.E., Doan V., et al. Holographic prism based on photo-thermo-refractive glass // Proc. SPIE. 2017. V. 10329. P. 103292Z. https://doi.org/10.1134/S0030400X17120025
        35. Angervaks A.E., Gorokhovskii K.S., Granovskii V.A., et al. Holographic prism made from photo-thermo-refractive glass: requirements and possibilities // Opt. Spectrosc. 2017. V. 123. № 6. P. 970–976. https://doi.org/10.1134/S0030400X17120025
        36. Doan V.B., Ivanov S.A., Okun R.A., et al. Analysis of errors in recording and reading of a holographic prism on photo-thermo-refractive glass // Opt. Spectrosc. 2018. V. 124. № 6. P. 895–900. https://doi.org/10.1134/S0030400X18060231
        37. Angervaks A.E., Gorokhovsky K.S., Granovskii V.A., et al. Holographic prism based on photo-thermo-refractive glass: new facilities for metrological application // Proceedings. Optical Fabrication, Testing, and Metrology VI. Frankfurt, Germany. 2018. V. 10692. P. 58–65. https://doi.org/10.1117/12.2312436
        38. Doan Van Bak Optical compact flat angle measure based on multiplex holographic Bragg gratings in photo-thermo-refractive glass for angular positioning systems [in Russian] // PhD thesis. ITMO University. St. Petersburg. 2018. 109 p.
        39. Ivanov S.A., Angervaks A.E., Shcheulin A.S. Application of photo-thermo-refractive glass as a holographic medium for holographic collimator gun sights // Proc. SPIE. 2014. V. 9131. P. 91311B. https://doi.org/10.1117/12.2052160
        40. Ivanov S.A., Angervaks A.E., Shcheulin A.S., et al. Recording holographic marks for telescopic systems in photo-thermo-refractive glass // Opt. Spectrosc.+. 2014. V. 117. № 6. P. 971–976. https://doi.org/10.1134/S0030400X1412011X
        41. Musikhina E.S., Ivanov S.A. Axial multiplexing of volume Bragg gratings with a common Bragg angle in photo-thermo-refractive glass [in Russian] // XIX Internat. Conf. on Holography and Applied Optical Technologies — HOLOEXPO-2022 Science and Practice. (Abstracts of reports). St. Petersburg, Russia. 2022. P. 138‒141.
        42. Odinokov S., Shishova M., Markin V., et al. Augmented reality display based on photo-thermo-refractive glass planar waveguide // Opt. Exp. 2020. V. 28. № 12. P. 17581–17594. https://doi.org/10.1364/OE.395273
        43. Ivanov S.A., Musikhina E.S., Nikonorov N.V. Light-guide optical combiner on photo-thermo-refractive glass with Bragg gratings for helmet-mounted displays [in Russian] // XIX Internat. Conf. on Holography and Applied Optical Technologies — HOLOEXPO-2022 Science and Practice. (Abstracts of reports). St. Petersburg, Russia. 2022. P. 165–167.