DOI: 10.17586/1023-5086-2023-90-04-48-56
УДК: 535.212
Effect molybdenum doping on photoinduced changes in the properties of As3S7 films
Full text on elibrary.ru
Гресько В.Р., Капустина Е.В., Сергеев М.М., Вейко В.П., Крбал М., Провоторов П.С., Колобов А.В., Нестеров С.И. Влияние легирования молибденом на фотоиндуцированные изменения свойств плёнок As3S7 // Оптический журнал. 2023. Т. 90. № 4. С. 48–56. http://doi.org/10.17586/1023-5086-2023-90-04-48-56
Gresko V.R., Kapustina E.V., Sergeev M.M., Veiko V.P., Krbal M., Provotorov P.S., Kolobov A.V., Nesterov S.I. Effect molybdenum doping on photoinduced changes in the properties of As3S7 films [In Russian] // Opticheskii Zhurnal. 2023. V. 90. № 4. P. 48–56. http://doi.org/1023-5086-2023-90-04-48-56
test
Subject of study. The paper considers the results of studying the influence of the Mo metal concentration on the change in the properties of As3S7 films under the action of continuous laser radiation. Aim of study. Investigation of the influence of Mo metal concentration on photodarkening and photoresist properties of As3S7 films. Method. The photodarkening of the films was carried out using continuous radiation with a wavelength of 445 nm, and the transmission spectra of the samples were measured with fiber spectrophotometer. Using an optical microscope, the surface of the films was examined. To study the photoresist effect, radiation with a wavelength of 532 nm and a solution of C8H19N in C6H5CN as a solvent were used. Main results. It was found that the degree of photodarkening decreased with increasing Mo concentration. If in the original film the transmission decreased by 10%, then at the highest metal concentration the change in transmission was close to zero. The study also shows that the ratio of the solubility rates of exposed and unexposed films also decreased at higher metal concentrations. Practical significance. The results of this study can be used to create devices that use a change in the phase state.
Acknowledgment: this work was supported by the Russian Foundation for Basic Research (grant No. 195326017) and the Czech Science Foundation (grant No. 2023392J).
photodarkening, photoresist, chalcogenides, thin films, laser exposure, As3S7, molybdenum
OCIS codes: 310.6188.
References:- Zhou T., Zhu Z., Liu X., Liang Z., Wang X. A review of the precision glass molding of chalcogenide glass (ChG) for infrared optics // Micromachines. 2018. V. 9. № 7. P. 337. https://doi.org/10.3390/mi9070337
- Jean P., Douaud A., LaRochelle S., Messaddeq Y., Shi W. Silicon subwavelength grating waveguides with highindex chalcogenide glass cladding // Optics Express. 2021. V. 29. № 13. P. 20851–20862. https://doi.org/10.1364/OE.430204
- Xu Y., Zhou Y., Wang X D., Zhang W., Ma E., Deringer V. L., Mazzarello R. Unraveling crystallization mechanisms and electronic structure of phasechange materials by largescale Ab initio simulations // Advanced Materials. 2022. V. 34. № 11. P. 2109139. https://doi.org/10.1002/adma.202109139
- Orlik C., Levéillé S., Arnab S. M., Howansky A. F., Stavro J., Dow S., Kasap S., Tanioka K., Goldan A. H., Zhao W. Improved temporal performance and optical quantum efficiency of avalanche amorphous selenium for low dose medical imaging // Medical Imaging 2022: Physics of Medical Imaging. SPIE. 2022. V. 12031. P. 1179–1185. https://doi.org/10.1117/12.2611820
- Cao Y., Liu C., Jiang J., Zhu X., Zhou J., Ni J., Zhang J., Pang J., Rummeli M. H., Zhou W., Liu H., Cuniberti G. Theoretical insight into highefficiency triplejunction tandem solar cells via the band engineering of antimony chalcogenides // Solar RRL. 2021. V. 5. № 4. P. 2000800. https://doi.org/10.1002/solr.202000800
- Chu K., Nan H., Li Q., Guo Y., Tian Y., Liu W. Amorphous MoS3 enriched with sulfur vacancies for efficient electrocatalytic nitrogen reduction // Journal of Energy Chemistry. 2021. V. 53. P. 132–138. https://doi.org/10.1016/j.jechem.2020.04.074
- Nemanich R.J., Connell G.A.N., Hayes T.M., Street R.A. Thermally induced effects in evaporated chalcogenide films. I. Structure // Physical Review B. 1978. V. 18. № 12. P. 6900. https://doi.org/10.1103/PhysRevB.18.6900
- Owen A.E., Firth A.P., Ewen P.J.S. Photoinduced structural and physicochemical changes in amorphous chalcogenide semiconductors // Philosophical Magazine B. 1985. V. 52. № 3. P. 347–362. https://doi.org/10.1080/13642818508240606
- Shin S.Y., Kim H., Golovchak R., Cheong B.K., Jain H., Choi Y.G. Ovonic threshold switching induced local atomic displacements in amorphous Ge60Se40 film probed via in situ EXAFS under DC electric field // Journal of NonCrystalline Solids. 2021. V. 568. P. 120955. https://doi.org/10.1016/j.jnoncrysol.2021.120955
- Tsuchihashi S., Kawamoto Y. Properties and structure of glasses in the system AsS // Journal ofNonCrystalline Solids. 1971. V. 5. № 4. P. 286–305. https://doi.org/10.1016/00223093(71)90069X
- Akola J., Jóvári P., Kaban I., Voleská I., Kolář J., Wágner T., Jones R.O. Structure, electronic, and vibrational properties of amorphous AsS2 and AgAsS2: Experimentally constrained density functional study // Physical Review B. 2014. V. 89. № 6. P. 064202. https://doi.org/10.1103/PhysRevB.89.064202
- Andler J., Mathur N., Zhao F., Handwerker C. Assessing the potential environmental impact of Cu3AsS4 PV systems // 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC). 2019. P. 1669–1674. https://doi.org/10.1109/PVSC40753.2019.8981146
- Stronski A., Paiuk O., Gudymenko A., Klad’Ko V., Oleksenko P., Vuichyk N., Lishchynskyy I., Lahderanta E., Lashkul A., Gubanova A., Krys’kov T. Effect of doping by transitional elements on properties of chalcogenide glasses // Ceramics International. 2015. V. 41. № 6. P. 7543–7548. https://doi.org/10.1016/j.ceramint.2015.02.077
- Kolobov A.V., Saito Y., Fons P., Krbal M. Structural metastability in chalcogenide semiconductors: the role of chemical bonding // Physica Status Solidi (b). 2020. V. 257. № 11. P. 2000138. https://doi.org/10.1002/pssb.202000138
- Krbal M., Prokop V., Cervinka V., Slang S., Frumarova B., Mistrik J., Provotorov P., Vlcek M., Kolobov A.V. The structure and optical properties of amorphous thin films along the As40S60MoS3 tieline prepared by spincoating // Materials Research Bulletin. 2022. V. 153. P. 111871. https://doi.org/10.1016/j.materresbull.2022.111871
- Kolobov A.V., Oyanagi H., Tanaka Ka., Tanaka K. Structural study of amorphous selenium by in situ EXAFS: Observation of photoinduced bond alternation // Phys. Rev. B55. 1997. P. 726. https://doi.org/10.1103/PhysRevB.55.726
- Kolobov A.V., Kondo M., Oyanagi H., Durny R., Matsuda A., Tanaka Ka. Experimental evidence for negative correlation energy and valence alternation in amorphous selenium // Phys. Rev. B56. 1997. P. 485. https://doi.org/10.1103/PhysRevB.58.12004
- Singh B., Beaumont S.P., Bower P.G., Wilkinson C.D.W. New inorganic electron resist system for high resolution lithography // Appl. Phys. Lett. 1982. V. 41. № 9. P. 889–891. https://doi.org/10.1063/1.93687
- Nesterov S., Boyko M., Krbal M., Kolobov A. On the ultimate resolution of As2S3based inorganic resists // Journal of NonCrystalline Solids. 2021. V. 563. P. 120816. https://doi.org/10.1016/j.jnoncrysol.2021.120816