ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-04-48-56

УДК: 535.212

Effect molybdenum doping on photoinduced changes in the properties of As3S7 films

For Russian citation (Opticheskii Zhurnal):

Гресько В.Р., Капустина Е.В., Сергеев М.М., Вейко В.П., Крбал М., Провоторов П.С., Колобов А.В., Нестеров С.И. Влияние легирования молибденом на фотоиндуцированные изменения свойств плёнок As3S7 // Оптический журнал. 2023. Т. 90. № 4. С. 48–56. http://doi.org/10.17586/1023-5086-2023-90-04-48-56

 

Gresko V.R., Kapustina E.V., Sergeev M.M., Veiko V.P., Krbal M., Provotorov P.S., Kolobov A.V., Nesterov S.I. Effect molybdenum doping on photoinduced changes in the properties of As3S7 films [In Russian] // Opticheskii Zhurnal. 2023. V. 90. № 4. P. 48–56. http://doi.org/1023-5086-2023-90-04-48-56

For citation (Journal of Optical Technology):

test

Abstract:

Subject of study. The paper considers the results of studying the influence of the Mo metal concentration on the change in the properties of As3S7 films under the action of continuous laser radiation. Aim of study. Investigation of the influence of Mo metal concentration on photodarkening and photoresist properties of As3S7 films. Method. The photodarkening of the films was carried out using continuous radiation with a wavelength of 445 nm, and the transmission spectra of the samples were measured with fiber spectrophotometer. Using an optical microscope, the surface of the films was examined. To study the photoresist effect, radiation with a wavelength of 532 nm and a solution of C8H19N in C6H5CN as a solvent were used. Main results. It was found that the degree of photodarkening decreased with increasing Mo concentration. If in the original film the transmission decreased by 10%, then at the highest metal concentration the change in transmission was close to zero. The study also shows that the ratio of the solubility rates of exposed and unexposed films also decreased at higher metal concentrations. Practical significance. The results of this study can be used to create devices that use a change in the phase state.

 

Acknowledgment: this work was supported by the Russian Foundation for Basic Research (grant No. 19­53­26017) and the Czech Science Foundation (grant No. 20­23392J).

Keywords:

photodarkening, photoresist, chalcogenides, thin films, laser exposure, As3S7, molybdenum

OCIS codes: 310.6188.

References:
  1. Zhou T., Zhu Z., Liu X., Liang Z., Wang X. A review of the precision glass molding of chalcogenide glass (ChG) for infrared optics // Micromachines. 2018. V. 9. № 7. P. 337. https://doi.org/10.3390/mi9070337
  2. Jean P., Douaud A., LaRochelle S., Messaddeq Y., Shi W. Silicon subwavelength grating waveguides with high­index chalcogenide glass cladding // Optics Express. 2021. V. 29. № 13. P. 20851–20862. https://doi.org/10.1364/OE.430204
  3. Xu Y., Zhou Y., Wang X ­D., Zhang W., Ma E., Deringer V. L., Mazzarello R. Unraveling crystallization mechanisms and electronic structure of phase­change materials by large­scale Ab initio simulations // Advanced Materials. 2022. V. 34. № 11. P. 2109139. https://doi.org/10.1002/adma.202109139
  4. Orlik C., Levéillé S., Arnab S. M., Howansky A. F., Stavro J., Dow S., Kasap S., Tanioka K., Goldan A. H., Zhao W. Improved temporal performance and optical quantum efficiency of avalanche amorphous selenium for low dose medical imaging // Medical Imaging 2022: Physics of Medical Imaging. SPIE. 2022. V. 12031. P. 1179–1185. https://doi.org/10.1117/12.2611820
  5. Cao Y., Liu C., Jiang J., Zhu X., Zhou J., Ni J., Zhang J., Pang J., Rummeli M. H., Zhou W., Liu H., Cuniberti G. Theoretical insight into high­efficiency triple­junction tandem solar cells via the band engineering of antimony chalcogenides // Solar RRL. 2021. V. 5. № 4. P. 2000800. https://doi.org/10.1002/solr.202000800
  6. Chu K., Nan H., Li Q., Guo Y., Tian Y., Liu W. Amorphous MoS3 enriched with sulfur vacancies for efficient electrocatalytic nitrogen reduction // Journal of Energy Chemistry. 2021. V. 53. P. 132–138. https://doi.org/10.1016/j.jechem.2020.04.074
  7. Nemanich R.J., Connell G.A.N., Hayes T.M., Street R.A. Thermally induced effects in evaporated chalcogenide films. I. Structure // Physical Review B. 1978. V. 18. № 12. P. 6900. https://doi.org/10.1103/PhysRevB.18.6900
  8. Owen A.E., Firth A.P., Ewen P.J.S. Photo­induced structural and physico­chemical changes in amorphous chalcogenide semiconductors // Philosophical Magazine B. 1985. V. 52. № 3. P. 347–362. https://doi.org/10.1080/13642818508240606
  9. Shin S.Y., Kim H., Golovchak R., Cheong B.K., Jain H., Choi Y.G. Ovonic threshold switching induced local atomic displacements in amorphous Ge60Se40 film probed via in situ EXAFS under DC electric field // Journal of Non­Crystalline Solids. 2021. V. 568. P. 120955. https://doi.org/10.1016/j.jnoncrysol.2021.120955
  10. Tsuchihashi S., Kawamoto Y. Properties and structure of glasses in the system As­S // Journal ofNon­Crystalline  Solids. 1971. V. 5. № 4. P. 286–305. https://doi.org/10.1016/0022­3093(71)90069­X
  11. Akola J., Jóvári P., Kaban I., Voleská I., Kolář J., Wágner T., Jones R.O. Structure, electronic, and vibrational properties of amorphous AsS2 and AgAsS2: Experimentally constrained density functional study // Physical Review B. 2014. V. 89. № 6. P. 064202. https://doi.org/10.1103/PhysRevB.89.064202
  12. Andler J., Mathur N., Zhao F., Handwerker C. Assessing the potential environmental impact of Cu3AsS4 PV systems // 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC). 2019. P. 1669–1674. https://doi.org/10.1109/PVSC40753.2019.8981146
  13. Stronski A., Paiuk O., Gudymenko A., Klad’Ko V., Oleksenko P., Vuichyk N., Lishchynskyy I., Lahderanta E., Lashkul A., Gubanova A., Krys’kov T. Effect of doping by transitional elements on properties of chalcogenide glasses // Ceramics International. 2015. V. 41. № 6. P. 7543–7548. https://doi.org/10.1016/j.ceramint.2015.02.077
  14. Kolobov A.V., Saito Y., Fons P., Krbal M. Structural metastability in chalcogenide semiconductors: the role of chemical bonding // Physica Status Solidi (b). 2020. V. 257. № 11. P. 2000138. https://doi.org/10.1002/pssb.202000138
  15. Krbal M., Prokop V., Cervinka V., Slang S., Frumarova B., Mistrik J., Provotorov P., Vlcek M., Kolobov A.V. The structure and optical properties of amorphous thin films along the As40S60­MoS3 tie­line prepared by spincoating // Materials Research Bulletin. 2022. V. 153. P. 111871. https://doi.org/10.1016/j.materresbull.2022.111871
  16. Kolobov A.V., Oyanagi H., Tanaka Ka., Tanaka K. Structural study of amorphous selenium by in situ EXAFS: Observation of photoinduced bond alternation // Phys. Rev. B55. 1997. P. 726. https://doi.org/10.1103/PhysRevB.55.726
  17. Kolobov A.V., Kondo M., Oyanagi H., Durny R., Matsuda A., Tanaka Ka. Experimental evidence for negative correlation energy and valence alternation in amorphous selenium // Phys. Rev. B56. 1997. P. 485. https://doi.org/10.1103/PhysRevB.58.12004
  18. Singh B., Beaumont S.P., Bower P.G., Wilkinson C.D.W. New inorganic electron resist system for high resolution lithography // Appl. Phys. Lett. 1982. V. 41. № 9. P. 889–891. https://doi.org/10.1063/1.93687
  19. Nesterov S., Boyko M., Krbal M., Kolobov A. On the ultimate resolution of As2S3­based inorganic resists // Journal of Non­Crystalline Solids. 2021. V. 563. P. 120816. https://doi.org/10.1016/j.jnoncrysol.2021.120816