ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-04-05-17

УДК: 551.501.816, 551.510.411

Volumetric thermochemical laser writing of nanostructured reflective diffraction gratings on a dual-layer material Zr/SiO2

For Russian citation (Opticheskii Zhurnal):

Куц Р.И., Корольков В.П., Микерин С.Л., Окотруб К.А., Белоусов Д.А., Малышев А.И., Саметов А.Р., Шиманский Р.В., Гаврилова Т.А. Объёмная термохимическая лазерная запись наноструктурированных отражающих дифракционных решёток на двухслойном материале Zr/SiO2 // Оптический журнал. 2023. Т. 90. № 4. С. 5–17. http://doi.org/10.17586/1023-5086-2023-90-04-05-17

For citation (Journal of Optical Technology):

Kuts R.I., Korolkov V.P., Mikerin S.L., Okotrub K.A., Belousov D.A., Malyshev A.I., Sametov A.R., Shimansky R.V., Gavrilova T.A. Volumetric thermochemical laser writing of nanostructured reflective diffraction gratings on a dual-layer material Zr/SiO2 [In Russian] // Opticheskii Zhurnal. 2023. V. 90. № 4. P. 5–17. http://doi.org/10.17586/1023-5086-2023-90-04-05-17

Abstract:

Subject of study. Volumetric  thermochemical laser writing of nanostructured reflective diffraction gratings in a dual­layer Zr/SiO2 material was studied. Objective. To study in detail direct laser writing on thin zirconium films on fused silica substrates in order to determine the reason of the anomalously large phase shift, as well as to investigate the possibility of creating reflective diffractive structures on its basis with a potential application in the component base of photonics. Method. Thermochemical writing with a focused laser beam on zirconium films deposited on fused silica substrates makes it possible to form oxide micropatterns. Depth measurements of their relief on an atomic force microscope show a surface relief no more than 10 nm deep, while measurement on a white light interferometer shows a relief up to hundreds of nanometers deep. Scanning electron microscopy and analysis of Raman spectra provide information on the internal structure and chemical composition of the modified regions. Main results. It is shown that the effect of laser writing of nanostructured reflective diffraction gratings on a dual­layer material is of a three­dimensional nature, since the layer is modified in depth by 50–60% more than the initial thickness of the Zr film. It has been demonstrated that phased gratings with a period equal to the laser beam scanning step are formed on the surface and in the depth of the modified layer. The modified layer, depending on the power of the writing beam, consists of a composition of oxide and zirconium nitride in amorphous or crystalline phases, including silicon oxide in the lower layer. The inner grating consists of channels in the modified layer, the cross section of which is near 80 nm. A hypothesis about the morphology and mechanism of formation of phased nanogratings has been proposed. Practical significance. It is proposed to supplement the “dry” one­stage technology for manufacturing binary reflective diffractive structures on a dual­layer Zr/SiO2 material with a stage of reactive ion etching for diffraction efficiency adjustment.

 

Acknowledgment: the work was supported by a Grant from the Russian Science Foundation (Project No. 22­79­00049). The research used the equipment of the  Center for Collective Use "Spectroscopy and Optics" of the Institute of Automation and Electrometry of the Siberian Branch of the Russian Academy of Sciences, the Center for Collective Use "High Technologies and Nanosystems Analytics" of Novosibirsk State University and the Department of Scanning Electron Microscopy of the Center for Collective Use "Nanostructures" of the Institute of Semiconductor Physics of the Russian Academy of Sciences Siberian Branch.

Keywords:

thermochemical laser writing, reflective gratings, zirconium film, reactive ion etching

OCIS codes: 050.1950, 050.6624, 050.6875, 110.4235

References:
  1. Veiko V.P., Poleshchuk A.G. Laser­induced local oxidation of thin metal films: physical fundamentals and applications // Fundamentals of Laser­Assisted Micro­and Nanotechnologies / Eds V.P. Veiko, V.I. Konov. Cham: Springer. 2014. P. 149–171.
  2. Ruffino F., Grimaldi M.G. Nanostructuration of thin metal films by pulsed laser irradiations: a review // Nanomaterials. 2019. V. 9. №. 8. P. 1133. https://doi.org/10.3390/nano9081133
  3. Bialuschewski D. Laser­assisted modification of metals and metal oxide semiconductors as photoactive materials. München: Dr. Hut Verlag, 2020. 127 p.
  4. Koronkevich V.P., Poleshchuk A.G., Churin E.G., Yurlov Y.I. Laser thermochemical technology for synthesizing optical diffraction elements utilizing chromium films // Soviet Journal of Quantum Electronics. 1985. V. 15. № 4. P. 494–497. https://doi.org/10.1070/QE1985v015n04ABEH006969
  5. Poleshchuk A.G., Nasyrov R.K., Asfour J.M. Combined computer­generated hologram for testing steep aspheric surfaces // Optics Express. 2009. V. 17. № 7. P. 5420–5425. https://doi.org/10.1364/OE.17.005420
  6. Sun K.W., Huang S.C., Kechiantz A., Lee C.P. Subwavelength gratings fabricated on semiconductor substrates via E­beam lithography and lift­off method // Optical and Quantum Electronics. 2005. V. 37. № 4. P. 425–432. https://doi.org/10.1007/s11082­005­2027­1
  7. Pramitha V., Gayathri M.S., Bhattacharya S. Electron beam written subwavelength gratings for polarization separation in the infrared // Proceedings of SPIE. 2015. V. 9374. P. 187–193. https://doi.org/10.1117/12.2078607
  8. Veiko V.P., Korolkov V.P., Poleshchuk A.G., Sinev D.A., Shakhno E.A. Laser technologies in micro­optics. Part 1. Fabrication of diffractive optical elements and photomasks with amplitude transmission //Optoelectronics, Instrumentation and Data Processing. 2017. V. 53. № 5. P. 474–483. https://doi.org/10.3103/S8756699017050077
  9. Solanki P.R., Kaushik A., Agrawal V.V., Malhotra B.D. Nanostructured metal oxide­based biosensors // NPG Asia Materials. 2011. V. 3. № 1. P. 17–24. https://doi.org/10.1038/asiamat.2010.137
  10. Chauhan I., Aggrawal S., Mohanty P. Metal oxide nanostructures incorporated/immobilized paper matrices and their applications: a review // RSC advances. 2015. V. 5. № 101. P. 83036–83055. https://doi.org/10.1039/C5RA13601F
  11. Shakhno E.A., Nguyen Q.D., Sinev D.A., Veiko V.P. Proximity­effect­related reduction of the minimum element size in thermochemical laser writing // Journal of Optical Technology. 2022. V. 89. № 6. P. 312–319. https://doi.org/10.1364/JOT.89.000312
  12. Poletayev S.D., Volotovsky S.G. Precision laser recording of microstructures on molybdenum films for generating a diffractive microrelief [In Russian] // Computer Optics. 2016. V. 40. № 3. P. 422–426. https://doi.org/10.18287/2412­6179­2016­40­3­422­426
  13. Guo C.F., Zhang Z., Cao S., Liu Q. Laser direct writing of nanoreliefs in Sn nanofilms // Optics Letters. 2009. V. 34. № 18. P. 2820–2822. https://doi.org/10.1364/OL.34.002820
  14. Shakhno E.A., Sinev D.A., Kulazhkin A.M. Features of laser oxidation of thin films of titanium // Journal of Optical Technology. 2014. V. 81. № 5.P. 298–302. https://doi.org/10.1364/JOT.81.000298
  15. Xia F., Jiao L., Wu D., Li S., Zhang K., Kong W., Yun M., Liu Q., Zhang X. Mechanism of pulsed­laser­induced oxidation of titanium films // Optical Materials Express. 2019. V 9. № 10. P. 4097–4103. https://doi.org/10.1364/OME.9.004097
  16. Korolkov V.P., Kuts R.I., Malyshev A.I., Matochkin A.E., Shimansky R.V. Dry method for the formation of reflective phase DOEs using direct laser writing on thin Zr films // Proceedings of SPIE. 2020. V. 11551. P. 211–217. https://doi.org/10.1117/12.2574196
  17. Poleshchuk A.G., Korolkov V.P. Laser writing systems and technologies for fabrication of binary and continuous relief diffractive optical elements // Proceedings of SPIE. 2007. V. 6732. P. 130–139. https://doi.org/10.1117/12.751930
  18. Okotrub K.A., Surovtsev N.V. Redox state of cytochromes in frozen yeast cells probed by resonance Raman spectroscopy // Biophysical Journal. 2015. V. 109. № 11. P. 2227–2234. https://doi.org/10.1016/j.bpj.2015.10.033
  19. Ciszak C., Mermoux M., Gutierrez G., Leprêtre F., Duriez C., Popa I., Fayette L., Chevalier S. Raman spectra analysis of ZrO2 thermally grown on Zircaloy substrates irradiated with heavy ion: Effects of oxygen isotopic substitution // Journal of Raman Spectroscopy. 2019. V. 50. № 3. P. 425–435. https://doi.org/10.1002/jrs.5513
  20. Balerio R., Kim H., Morell­Pacheco A., Hawkins L., Shiau C.­H., Shao L. ZrN phase formation, hardening and Nitrogen diffusion kinetics in plasma nitrided Zircaloy­4 // Materials. 2021. V. 14. № 13. P. 3572. https://doi.org/10.3390/ma14133572
  21. Veszelei M., Andersson K.E., Roos A., Ribbing C.­G. Optical constants of sputtered ZrN films for heat mirror applications // Proceedings of SPIE. 1993. V. 2017. P. 25–34. https://doi.org/10.1117/12.161968
  22. Pretorius R., Harris J.M., Nicolet M­A. Reaction of thin metal films with SiO2 substrates // Solid­State Electronics. 1978. V. 21. № 4. P. 667–675. https://doi.org/10.1016/0038­1101(78)90335­0
  23. Wang S.Q, Mayer J.W. Reactions of Zr thin films with SiO2 substrates // Journal of Applied Physics. 1988. V. 64. P. 4711. https://doi.org/10.1063/1.341208