ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-04-78-91

УДК: 535.21

Hybrid laser subtractive technology for the fabrication optofluidic elements in a nanoporous silicate matrix

For Russian citation (Opticheskii Zhurnal):

Шишкина А.С., Язан Алсаиф, Якимук В.А., Ли Чуньюй, Андреева О.В., Заколдаев Р.А. Гибридная лазерная субтрактивная технология формирования оптофлюидных элементов в нанопористой силикатной матрице // Оптический журнал. 2023. Т. 90. № 4. С. 78–91. http://doi.org/10.17586/1023-5086-2023-90-04-78-91

 

Shishkina А.S., Yazan AlSaif, Yakimuk V.А., Li Chunyu, Andreeva O.V., Zakoldaev R.А. Hybrid laser subtractive technology for the fabrication of optofluidic elements in a nanoporous silicate matrix [ In Russian] // Opticheskii Zhurnal. 2023. V. 90. № 4. P. 78–91. http://doi.org/10.17586/1023-5086-2023-90-04-78-91

For citation (Journal of Optical Technology):

test

Abstract:

Subject of study. Investigation of the effect of alkaline etching on three types of laser­induced modification initiated inside of nanoporous silicate matrix: birefringent structures, densification and decompaction of the material. The purpose. The influence of alkaline etching on the optical and morphological properties of three types of laser­induced modification of porous glass is being studied: birefringent structures, densification and decompaction of the material formed by ultrashort laser pulses. Methodology. The technology is implemented in three stages: (i) direct laser writing in the nanoporous silicate matrix using focused (20X, NA = 0.4) femtosecond laser pulses (n = 25–50 kHz, u = 1–45 mm/s, P = 15–60 mW, t = 500 and 2000 fs, l = 515 nm); (ii) alkaline etching in potassium hydroxide, which helps to clean up the fabricated tracks, in addition, at this stage, the average pore size increases to 17 nm; (iii) purification of the sample in distilled water followed by drying in a furnace. Main results. The conditions for fabrication of hollow microchannels with a length of 5 mm and a width of 5–7 µm. The microchannels were also filled with liquid (volume of 3 µl), where after 10–12 s the liquid completely evaporated. The microchannels possess a selective reflection in a narrow visible spectral range. Practical significance. A novel methodology of microchannel fabrication in nanoporous silicate matrix plates is demonstrated. The channel is surrounded by waveguiding layers that expand possible applications in optofluidics. The study opens up new possibilities in the development of volumetric microfluidic systems, which is in demand for the study of biochemical reactions or the diagnosis of environmental changes. In the future, such optofluidic elements in nanoporous silicate matrix can be in demand for novel chip­scale sensor devices or laboratories on a chip (lab on a chip).

 

Acknowledgment: the study was supported by a grant from the Russian Science Foundation (Project № 20­71­10103). The study on the input of laser radiation into an optofluidic microchannel was carried out as part of the financial support of the NIRMA FT MF grant of ITMO University “Channel optical waveguides in nanoporous optical materials for environmental diagnostics” by Yakimuk Veronika.

Keywords:

microchannels, porous glass, nanoporous matrix, femtosecond laser pulses, subtractive technology

OCIS codes: 140.3390, 160.2750

References:
  1. Bruus H. Theoretical microfluidics. Chippenham: Oxford university press, 2007. 345 p.
  2. Li W., Chu W., Yin D., Liang Y., Wang P., Qi J., Wang Z., Lin J., Wang M., Wang Z., Cheng Y. A three­dimensional microfluidic mixer of a homogeneous mixing efficiency fabricated by ultrafast laser internal processing of glass // Applied Physics A. 2020. V. 126. № 10. P. 1–7. https://doi.org/10.1007/s00339­020­04000­8
  3. Niculescu A.G., Chircov C., Bîrcă A.C., Grumezescu A.M. Fabrication and applications of microfluidic devices: A review // International Journal of Molecular Sciences. 2021. V. 22. № 4. P. 2011. https://doi.org/10.3390/ijms22042011
  4. Italia V., Giakoumaki A.N., Bonfadini S., Bharadwaj V., Le Phu T., Eaton S.M., Ramponi R., Bergamini G., Lanzani G., Criante L. Laserinscribed glass microfluidic device for nonmixing flow of miscible solvents // Micromachines. 2018. V. 10. № 1. P. 23. https://doi.org/10.3390/mi10010023
  5. Liao Y., Song J., Li E., Luo Y., Shen Y., Chen D., Cheng Y., Xu Z., Sugioka K., Midorikawa K. Rapid prototyping of three­dimensional microfluidic mixers in glass by femtosecond laser direct writing // Lab on a Chip. 2012. V. 12. № 4. P. 746–749. http://doi.org/. 10.1039/C2LC21015K
  6. Tan D., Zhang B., Qiu J. Ultrafast laser direct writing in glass: Thermal accumulation engineering and applications // Laser & Photonics Reviews. 2021. V. 15. № 9. P. 2000455. https://doi.org/10.1002/lpor.202000455
  7. Fedotov S., Lipatiev A., Lipateva T., Lotarev S., Sigaev V. Hollow channel formation inside Sodium Aluminoborate Glass by femtosecond laser writing and distilled water etching // Materials. 2021. V. 14. № 19. P. 5495. https://doi.org/10.3390/ma14195495
  8. Sima F., Sugioka K. Ultrafast laser manufacturing of nanofluidic systems // Nanophotonics. 2021. V. 10. № 9. P. 2389–2406. https://doi.org/10.1515/nanoph­2021­0159
  9. Macias­Montero M., Muñoz F., Sotillo B., Del Hoyo J., Ariza R., Fernandez P., Siegel J., Solis J. Femtosecond laser induced thermophoretic writing of waveguides in silicate glass // Scientific reports. 2021. V. 1. № 1. P. 1–12. https://doi.org/10.1038/s41598­021­87765­z
  10. Shakhgildyan G., Lipatiev A., Lotarev S., Fedotov S., Sigaev V. Glass: Home of the periodic table // Frontiers in Chemistry. 2020. V. 8. P. 384. https://doi.org/10.3389/fchem.2020.00384
  11. Kanehira S., Si J., Qiu J., Fujita K., Hirao K. Periodic nanovoid structures via femtosecond laser irradiation // Nano Letters. 2005. V. 5. № 8. P. 1591–1595. https://doi.org/10.1021/nl0510154
  12. Li X., Xu J., Lin Z., Qi J., Wang P., Chu W., Fang Z., Wang Z., Chai Z., Cheng Y. Polarization­insensitive space­selective etching in fused silica induced by picosecond laser irradiation // Applied Surface Science. 2019. V. 485. P. 188–193. https://doi.org/10.1016/j.apsusc.2019.04.211
  13. Capuano L., Tiggelaar R.M., Berenschot J.W., Gardeniers J.G., Römer G.R. Fabrication of millimeter­long structures in sapphire using femtosecond infrared laser pulses and selective etching // Optics and Lasers in Engineering. 2020. V. 133. P. 106114. https://doi.org/10.1016/j.optlaseng.2020.
  14. Vazquez R.M., Osellame R., Nolli D., Dongre C., van den Vlekkert H., Ramponi R., Pollnau M., Cerullo G. Integration of femtosecond laser written optical waveguides in a lab­on­chip // Lab on a Chip. 2009. V. № 1. P. 91–96. https://doi.org/10.1039/B808360F
  15. Lijing Z., Zakoldaev R.A., Sergeev M.M., Petrov A.B., Veiko V.P., Alodjants A.P. Optical sensitivity of waveguides inscribed in nanoporous silicate framework // Nanomaterials. 2021. V. 11. № 1. P. 123. https://doi.org/10.3390/nano11010123
  16. Sima F., Sugioka K., Vázquez R.M., Osellame R., Kelemen L., Ormos P. Three­dimensional femtosecond laser processing for lab­on­a­chip applications // Nanophotonics. 2018. V. 7. № 3. P. 613–634. https://doi.org/10.1515/nanoph­2017­0097
  17. Liu C., Liao Y., He F., Song J., Lin D., Cheng Y., Sugioka K., Midorikawa K. Compact 3D microfluidic channel structures embedded in glass fabricated by femtosecond laser direct writing //Journal of Laser Micro Nanoengineering. 2013. V. 8. № 2. P. 170. http://doi.org/10.2961/jlmn.2013.02.0010
  18. Zhong L., Zakoldaev R.A., Sergeev M.M., Veiko V.P., Li Z. Porous glass density tailoring by femtosecond laser pulses // Optical and Quantum Electronics. 2020. V. 52. № 1. P. 1–8. https://doi.org/10.1007/s11082­019­2163­7
  19. Kudryashov S., Rupasov A., Zakoldaev R., Smaev M., Kuchmizhak A., Zolot’ko A., Kosobokov M., Akhmatkhanov A., Shur V. Nanohydrodynamic local compaction and nanoplasmonic form­birefringence inscription by ultrashort laser pulses in nanoporous fused Silica // Nanomaterials. 2022. V. 12. № 20. P. 3613. https://doi.org/10.3390/nano12203613
  20. Itina T.E., Zakoldaev R.A., Sergeev M.M., Ma H., Kudryashov S.I., Medvedev O.S., Veiko V.P. Ultra­short laser­induced high aspect ratio densification in porous glass // Optical Materials Express. 2019. V. 9. № 11. P. 4379–4389. https://doi.org/10.1364/OME.9.004379
  21. Bykov E.P., Zakoldaev R.A., Andreeva N.V., Shishkina A.S., Yandybaeva Y.I., Andreeva O.V. Production of nanoporous silicate matrices — problems of optical homogeneity // Journal of Optical Technology. 2022. V. 89. № 3. P. 161–168. https://doi.org/10.1364/JOT.89.000161
  22. Ma H., Zakoldaev R.A., Rudenko A., Sergeev M.M., Veiko V.P., Itina T.E. Well­controlled femtosecond laser inscription of periodic void structures in porous glass for photonic applications // Optics express. 2017. V. 25. № 26. P. 33261–33270. https://doi.org/10.1364/OE.25.033261
  23. Liao Y., Ni J., Qiao L., Huang M., Bellouard Y., Sugioka K., Cheng Y. High­fidelity visualization of formation of volume nanogratings in porous glass by femtosecond laser irradiation // Optica. 2015. V. 2. № 4. P. 329–34. https://doi.org/10.1364/OPTICA.2.000329
  24. Kudryashov S.I., Danilov P.A., Rupasov A.E., Smayev M.P., Kirichenko A.N., Smirnov N.A., Ionin A.A., Zolot'ko A.S., Zakoldaev R.A. Birefringent microstructures in bulk fluorite produced by ultrafast pulsewidth­dependent laser inscription // Applied Surface Science. 2021. V. 568. P. 150877. https://doi.org/10.1016/j.apsusc.2021.150877
  25. Liu Z., Xu J., Lin Z., Qi J., Li X., Zhang A., Lin J., Chen J., Fang Z., Song Y., Chu W. Fabrication of single­mode circular optofluidic waveguides in fused silica using femtosecond laser microfabrication // Optics & Laser Technology. 2021. V. 141. P. 107118. https://doi.org/10.1016/j.optlastec.2021.107118
  26. Xu J., Sima F., Sugioka K. Femtosecond laser direct writing for 3D microfluidic biochip fabrication // Laser Micro­Nano­Manufacturing and 3D Microprinting. 2020. P. 247–272. https://doi.org/10.1007/978­3­030­59313­1_8