DOI: 10.17586/1023-5086-2023-90-04-78-91
УДК: 535.21
Hybrid laser subtractive technology for the fabrication optofluidic elements in a nanoporous silicate matrix
Full text on elibrary.ru
Шишкина А.С., Язан Алсаиф, Якимук В.А., Ли Чуньюй, Андреева О.В., Заколдаев Р.А. Гибридная лазерная субтрактивная технология формирования оптофлюидных элементов в нанопористой силикатной матрице // Оптический журнал. 2023. Т. 90. № 4. С. 78–91. http://doi.org/10.17586/1023-5086-2023-90-04-78-91
Shishkina А.S., Yazan AlSaif, Yakimuk V.А., Li Chunyu, Andreeva O.V., Zakoldaev R.А. Hybrid laser subtractive technology for the fabrication of optofluidic elements in a nanoporous silicate matrix [ In Russian] // Opticheskii Zhurnal. 2023. V. 90. № 4. P. 78–91. http://doi.org/10.17586/1023-5086-2023-90-04-78-91
test
Subject of study. Investigation of the effect of alkaline etching on three types of laserinduced modification initiated inside of nanoporous silicate matrix: birefringent structures, densification and decompaction of the material. The purpose. The influence of alkaline etching on the optical and morphological properties of three types of laserinduced modification of porous glass is being studied: birefringent structures, densification and decompaction of the material formed by ultrashort laser pulses. Methodology. The technology is implemented in three stages: (i) direct laser writing in the nanoporous silicate matrix using focused (20X, NA = 0.4) femtosecond laser pulses (n = 25–50 kHz, u = 1–45 mm/s, P = 15–60 mW, t = 500 and 2000 fs, l = 515 nm); (ii) alkaline etching in potassium hydroxide, which helps to clean up the fabricated tracks, in addition, at this stage, the average pore size increases to 17 nm; (iii) purification of the sample in distilled water followed by drying in a furnace. Main results. The conditions for fabrication of hollow microchannels with a length of 5 mm and a width of 5–7 µm. The microchannels were also filled with liquid (volume of 3 µl), where after 10–12 s the liquid completely evaporated. The microchannels possess a selective reflection in a narrow visible spectral range. Practical significance. A novel methodology of microchannel fabrication in nanoporous silicate matrix plates is demonstrated. The channel is surrounded by waveguiding layers that expand possible applications in optofluidics. The study opens up new possibilities in the development of volumetric microfluidic systems, which is in demand for the study of biochemical reactions or the diagnosis of environmental changes. In the future, such optofluidic elements in nanoporous silicate matrix can be in demand for novel chipscale sensor devices or laboratories on a chip (lab on a chip).
Acknowledgment: the study was supported by a grant from the Russian Science Foundation (Project № 207110103). The study on the input of laser radiation into an optofluidic microchannel was carried out as part of the financial support of the NIRMA FT MF grant of ITMO University “Channel optical waveguides in nanoporous optical materials for environmental diagnostics” by Yakimuk Veronika.
microchannels, porous glass, nanoporous matrix, femtosecond laser pulses, subtractive technology
OCIS codes: 140.3390, 160.2750
References:- Bruus H. Theoretical microfluidics. Chippenham: Oxford university press, 2007. 345 p.
- Li W., Chu W., Yin D., Liang Y., Wang P., Qi J., Wang Z., Lin J., Wang M., Wang Z., Cheng Y. A threedimensional microfluidic mixer of a homogeneous mixing efficiency fabricated by ultrafast laser internal processing of glass // Applied Physics A. 2020. V. 126. № 10. P. 1–7. https://doi.org/10.1007/s00339020040008
- Niculescu A.G., Chircov C., Bîrcă A.C., Grumezescu A.M. Fabrication and applications of microfluidic devices: A review // International Journal of Molecular Sciences. 2021. V. 22. № 4. P. 2011. https://doi.org/10.3390/ijms22042011
- Italia V., Giakoumaki A.N., Bonfadini S., Bharadwaj V., Le Phu T., Eaton S.M., Ramponi R., Bergamini G., Lanzani G., Criante L. Laserinscribed glass microfluidic device for nonmixing flow of miscible solvents // Micromachines. 2018. V. 10. № 1. P. 23. https://doi.org/10.3390/mi10010023
- Liao Y., Song J., Li E., Luo Y., Shen Y., Chen D., Cheng Y., Xu Z., Sugioka K., Midorikawa K. Rapid prototyping of threedimensional microfluidic mixers in glass by femtosecond laser direct writing // Lab on a Chip. 2012. V. 12. № 4. P. 746–749. http://doi.org/. 10.1039/C2LC21015K
- Tan D., Zhang B., Qiu J. Ultrafast laser direct writing in glass: Thermal accumulation engineering and applications // Laser & Photonics Reviews. 2021. V. 15. № 9. P. 2000455. https://doi.org/10.1002/lpor.202000455
- Fedotov S., Lipatiev A., Lipateva T., Lotarev S., Sigaev V. Hollow channel formation inside Sodium Aluminoborate Glass by femtosecond laser writing and distilled water etching // Materials. 2021. V. 14. № 19. P. 5495. https://doi.org/10.3390/ma14195495
- Sima F., Sugioka K. Ultrafast laser manufacturing of nanofluidic systems // Nanophotonics. 2021. V. 10. № 9. P. 2389–2406. https://doi.org/10.1515/nanoph20210159
- MaciasMontero M., Muñoz F., Sotillo B., Del Hoyo J., Ariza R., Fernandez P., Siegel J., Solis J. Femtosecond laser induced thermophoretic writing of waveguides in silicate glass // Scientific reports. 2021. V. 1. № 1. P. 1–12. https://doi.org/10.1038/s4159802187765z
- Shakhgildyan G., Lipatiev A., Lotarev S., Fedotov S., Sigaev V. Glass: Home of the periodic table // Frontiers in Chemistry. 2020. V. 8. P. 384. https://doi.org/10.3389/fchem.2020.00384
- Kanehira S., Si J., Qiu J., Fujita K., Hirao K. Periodic nanovoid structures via femtosecond laser irradiation // Nano Letters. 2005. V. 5. № 8. P. 1591–1595. https://doi.org/10.1021/nl0510154
- Li X., Xu J., Lin Z., Qi J., Wang P., Chu W., Fang Z., Wang Z., Chai Z., Cheng Y. Polarizationinsensitive spaceselective etching in fused silica induced by picosecond laser irradiation // Applied Surface Science. 2019. V. 485. P. 188–193. https://doi.org/10.1016/j.apsusc.2019.04.211
- Capuano L., Tiggelaar R.M., Berenschot J.W., Gardeniers J.G., Römer G.R. Fabrication of millimeterlong structures in sapphire using femtosecond infrared laser pulses and selective etching // Optics and Lasers in Engineering. 2020. V. 133. P. 106114. https://doi.org/10.1016/j.optlaseng.2020.
- Vazquez R.M., Osellame R., Nolli D., Dongre C., van den Vlekkert H., Ramponi R., Pollnau M., Cerullo G. Integration of femtosecond laser written optical waveguides in a labonchip // Lab on a Chip. 2009. V. № 1. P. 91–96. https://doi.org/10.1039/B808360F
- Lijing Z., Zakoldaev R.A., Sergeev M.M., Petrov A.B., Veiko V.P., Alodjants A.P. Optical sensitivity of waveguides inscribed in nanoporous silicate framework // Nanomaterials. 2021. V. 11. № 1. P. 123. https://doi.org/10.3390/nano11010123
- Sima F., Sugioka K., Vázquez R.M., Osellame R., Kelemen L., Ormos P. Threedimensional femtosecond laser processing for labonachip applications // Nanophotonics. 2018. V. 7. № 3. P. 613–634. https://doi.org/10.1515/nanoph20170097
- Liu C., Liao Y., He F., Song J., Lin D., Cheng Y., Sugioka K., Midorikawa K. Compact 3D microfluidic channel structures embedded in glass fabricated by femtosecond laser direct writing //Journal of Laser Micro Nanoengineering. 2013. V. 8. № 2. P. 170. http://doi.org/10.2961/jlmn.2013.02.0010
- Zhong L., Zakoldaev R.A., Sergeev M.M., Veiko V.P., Li Z. Porous glass density tailoring by femtosecond laser pulses // Optical and Quantum Electronics. 2020. V. 52. № 1. P. 1–8. https://doi.org/10.1007/s1108201921637
- Kudryashov S., Rupasov A., Zakoldaev R., Smaev M., Kuchmizhak A., Zolot’ko A., Kosobokov M., Akhmatkhanov A., Shur V. Nanohydrodynamic local compaction and nanoplasmonic formbirefringence inscription by ultrashort laser pulses in nanoporous fused Silica // Nanomaterials. 2022. V. 12. № 20. P. 3613. https://doi.org/10.3390/nano12203613
- Itina T.E., Zakoldaev R.A., Sergeev M.M., Ma H., Kudryashov S.I., Medvedev O.S., Veiko V.P. Ultrashort laserinduced high aspect ratio densification in porous glass // Optical Materials Express. 2019. V. 9. № 11. P. 4379–4389. https://doi.org/10.1364/OME.9.004379
- Bykov E.P., Zakoldaev R.A., Andreeva N.V., Shishkina A.S., Yandybaeva Y.I., Andreeva O.V. Production of nanoporous silicate matrices — problems of optical homogeneity // Journal of Optical Technology. 2022. V. 89. № 3. P. 161–168. https://doi.org/10.1364/JOT.89.000161
- Ma H., Zakoldaev R.A., Rudenko A., Sergeev M.M., Veiko V.P., Itina T.E. Wellcontrolled femtosecond laser inscription of periodic void structures in porous glass for photonic applications // Optics express. 2017. V. 25. № 26. P. 33261–33270. https://doi.org/10.1364/OE.25.033261
- Liao Y., Ni J., Qiao L., Huang M., Bellouard Y., Sugioka K., Cheng Y. Highfidelity visualization of formation of volume nanogratings in porous glass by femtosecond laser irradiation // Optica. 2015. V. 2. № 4. P. 329–34. https://doi.org/10.1364/OPTICA.2.000329
- Kudryashov S.I., Danilov P.A., Rupasov A.E., Smayev M.P., Kirichenko A.N., Smirnov N.A., Ionin A.A., Zolot'ko A.S., Zakoldaev R.A. Birefringent microstructures in bulk fluorite produced by ultrafast pulsewidthdependent laser inscription // Applied Surface Science. 2021. V. 568. P. 150877. https://doi.org/10.1016/j.apsusc.2021.150877
- Liu Z., Xu J., Lin Z., Qi J., Li X., Zhang A., Lin J., Chen J., Fang Z., Song Y., Chu W. Fabrication of singlemode circular optofluidic waveguides in fused silica using femtosecond laser microfabrication // Optics & Laser Technology. 2021. V. 141. P. 107118. https://doi.org/10.1016/j.optlastec.2021.107118
- Xu J., Sima F., Sugioka K. Femtosecond laser direct writing for 3D microfluidic biochip fabrication // Laser MicroNanoManufacturing and 3D Microprinting. 2020. P. 247–272. https://doi.org/10.1007/9783030593131_8