DOI: 10.17586/1023-5086-2023-90-04-92-104
УДК: 681.7.068
Analysis of the optical scheme of a tunable interferometer with exact fixation of the interference grating on a stationary photosensitive sample
Full text on elibrary.ru
Микерин С.Л., Угожаев В.Д. Анализ оптической схемы перестраиваемого интерферометра с точной фиксацией интерференционной решётки на неподвижном фоточувствительном образце // Оптический журнал. 2023. Т. 90. № 4. С. 92–104. http://doi.org/10.17586/1023-5086-2023-90-04-92-104
Mikerin S.L., Ugozhaev V.D. Analysis of the optical scheme of a tunable interferometer with exact fixation of the interference grating on a stationary photosensitive sample [in Russian] // Opticheskii Zhurnal. 2023. V. 90. № 4. P. 92–104. http://doi.org/10.17586/1023-5086-2023-90-04-92-104
test
Subject of study. A holographic system with a tunable convergence angle of two interfering light beams, based on a beamsplitting cube and designed for writing diffraction gratings, is investigated analytically. The initial light beam is introduced into the cube by means of a movable mirror, which performed both linear and angular displacement, due to which the convergence angle is tuned. For the combined movement of the movable mirror, a lever mechanism is used, based on an inclined guide. Aim of study. The aim of study is to find such a way of matching of both displacements of the movable mirror, in which the interference grating, created in the plane of complete mutual overlap of converging beams, would turn out to be immobile when the convergence angle is tuned. Method. The analysis of the path of light beams in the system was carried out within the framework of geometric optics. Main results. It was found that to fix the spatial position of the interference grating, the contact profile of the guide must be curvilinear. The exact functional dependence of the envelope of this profile is derived, and the tuning characteristics are calculated depending on the position of the photosensitive sample relative to the beamsplitting cube. Practical significance. Such a design of the studied holographic system opens up the possibility of using light beams of any diameter without system correction.
Acknowledgment: the work was carried out at the expense of a subsidy for financial support for the implementation of the state task of the Institute of Automation and Electrometry of the Siberian Branch of the Russian Academy of Sciences (Project No. 1210317000304).
two-beam interferometer, beam-splitting cube, fixed mirrors, fixed photosensitive sample, interference grating, period tuning, interference lithography
OCIS codes: 080.0080, 080.2740, 080.4035, 120.3180, 120.4570, 120.4640, 220.2740
References:1. Gleeson M.R., Sheridan J.T., Bruder F.-K., Rölle T., Berneth H., Weiser M.-S., Fäcke T. Comparison of a new self-developing photopolymer with AA/PVA based photopolymer utilizing the NPDD model // Optics Express. 2011. V. 19. № 27. P. 26325. https:doi.org/10.1364/OE.19.026325
2. Olivares-Pérez A., Toxqui-López S., Padilla-Velasco A.L. Nopal cactus (Opuncia Ficus-Indica) as a holographic material // Materials. 2012. V. 5. № 11. P. 2383–2402. https:doi.org/10.3390/ma5112383
3. Nimmi K.P., Pramitha V., Sreekumar K., Kartha C.S., Joseph R.J. Effect of concentration of DYE on the storage life of plane wave gratings on photopolymer film // J. of Applied Polymer Science. 2012. V. 125. № 2. P. 1238–1243. https:doi.org/10.1002/app.34963
4. Zhizhchenko A.Yu., Vitrik O.B., Kulchin Yu.N. Recording and thermo developing of latentphase holograms in the photosensitive polymer material based on anthracylacetonatoboron difluoride // Optical Materials. 2015. V. 46. P. 265–269. https:doi.org/10.1016/j.optmat.2015.04.030
5. Matusevich V., Tolstik E., Kowarschik R., Egorova E., Matusevich Yu.I., Krul L. New holographic polymeric composition based on plexiglass, polyvinyl butyral, and phenanthrenquinone // Optics Communications. 2013. V. 295. P. 79–83. https:doi.org/10.1016/j.optcom.2013.01.016
6. Smirnova T.N., Kokhtich L.M., Sakhno O.V., Stumpe J. Holographic nanocomposites for recording polymer-nanoparticle periodic structures: I. General approach to choice of components of nanocomposites and their holographic properties // Optics and Spectroscopy. 2011. V. 110. № 1. P. 129–136. https:doi.org/10.1134/S0030400X11010206
7. Smirnova T.N., Kokhtich L.M., Sakhno O.V., Stumpe J. Holographic nanocomposites for recording polymer-nanoparticle periodic structures: II. Mechanism of formation of polymer-nanoparticle bulk periodic structure and effect of parameters of forming field on structure efficiency // Optics and Spectroscopy. 2011. V. 110. № 1. P. 137–144. https:doi.org/10.1134/S0030400X11010218
8. Smirnova T.N., Sakhno O.V., Bezrodnyi V.I., Stumpe J.J. Nonlinear diffraction in gratings based on polymer-dispersed TiO2 nanoparticles // Applied Physics B. 2005. V. 80. № 8. P. 947–951. https:doi.org/10.1007/s00340-005-1873-7
9. Sakhno O.V., Smirnova T.N., Goldenberg L.M., Stumpe J. Holographic pattering of luminescent photopolymer nanocomposites // Material Science Engineering C. 2008. V. 28. № 1. P. 28–35. https:doi.org/10.1016/j.msec.2007.03.002
10. Nazarov M.M., Khaydukov K.V., Sokolov V.I., Khaydukov E.V. Laser formation of Bragg gratings in polymer nanocomposite materials // Quantum Electronics. 2016. V. 46. № 1. P. 29–32. https:doi.org/10.1070/QE2016v046n01ABEH015920
11. Klepp J., Pruner C., Tomita Y., Plonka-Spehr C., Geltenbort P., Ivanov S., Manzin G., Andersen K.H., Kohlbrecher J., Ellabban M.A., Fally M. Diffraction of slow neutrons by holographic SiO2 nanoparticle-polymer composite gratings // Physical Review A. 2011. V. 84. № 1. P. 013621. https:doi.org/10.1103/PhysRevA.84.013621
12. Smirnova T.N., Sakhno O.V., Yezhov P.V., Kokhtych L., Goldenberg L.M., Stumpe J. Amplified spontaneous emission in polymer-CdSe/ZnS-nanocrystal DFB structures produced by the holographic method // Nanotechnology. 2009. V. 20. № 25. P. 245707. https:doi.org/10.1088/0957-4484/20/24/245707
13. Mikhailov V., Elliott J., Wurtz G., Bayvel P., Zayats A.V. Dispersing light with surface plasmon polaritonic crystals // Physical Review Letters. 2007. V. 99. № 8. P. 083901. https:doi.org/10.1103/PhysRevLett.99.083901
14. Angervaks A.E., Van Bac D., Ivanov S.A., Okun R.A., Nikonorov N.V., Ryskin A.I., Gorokhovskii K.S., Granovskii V.A. A holographic prism based on photo-thermo-refractive glass: requirements and possibilities // Optics and Spectroscopy. 2017. V. 123. № 6. P. 970–976. https:doi.org/10.1134/S0030400X17120025
15. Zhang Z., Xu B., He J., Hou M., Bao W., Wang Y. High-efficiency inscription of fiber Bragg grating array with high-energy nanosecond-pulsed laser talbot inter-ferometer // Sensors. 2020. V. 20. P. 4307. https:doi.org/10.3390/s20154307
16. Konnov K.A., Varzhel S.V., Gribaev A.I., Cherepanov A.D.,·Doubenskaia M.A., Meshkovskiy I.K. Inscription of superimposed tilted fiber Bragg gratings // Optical and Quantum Electronics. 2020. V. 52. P. 169. https:doi.org/10.1007/s11082-020-02291-y
17. Poleshchuk, A.G., Kutanov, A.A., Bessmeltsev, V.P., Korolkov V.P., Shimanskii R.V., Malyshev A.I., Matochkin A.E., Goloshevskii N.V., Makarov K.V., Makarov V.P., Snimshchikov I.A., Sydyk Uulu N. Microstructuring of optical surfaces: Technology and device for direct laser writing of diffractive structures // Optoelectronics, Instrumentation and Data Processing. 2010. V. 46. № 2. P. 171–180. https:doi.org/10.3103/S8756699010020093
18. Mikerin S.L., Ugozhaev V.D. Reconfigurable holographic interferometer with fixed mirrors // Optoelectronics, Instrumentation and Data Processing. 2012. V. 48. № 4. P. 341–350. https:doi.org/10.3103/S8756699012040036
19. Ugozhaev V.D. Rotationally tunable two-beam interferometer with a fixed photosensitive element. Part I. Interferometer based on a beamsplitter cube // Optoelectronics, Instrumentation and Data Processing. 2016. V. 52. № 2. P. 153–160. https:doi.org/10.3103/S8756699016020072
20. Mikerin S.L., Ugozhaev V.D. Two-beam interferometer with a fixed photodetector tuned by a mobile mirror [in Russian] // Applied photonics. 2018. V. 5. № 3. P. 218–237. https:doi.org/10.15593/2411-4367/2018.3.07 21. Mikerin S.L., Ugozhaev V.D. A two-beam interferometer with the tuning of the interference pattern period by simulating its rotation // Precision Engineering. 2022. V. 78. P. 40–46. https:doi.org/10.1016/j.precisioneng.2022.07.004