ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-04-92-104

УДК: 681.7.068

Analysis of the optical scheme of a tunable interferometer with exact fixation of the interference grating on a stationary photosensitive sample

For Russian citation (Opticheskii Zhurnal):

Микерин С.Л., Угожаев В.Д. Анализ оптической схемы перестраиваемого интерферометра с точной фиксацией интерференционной решётки на неподвижном фоточувствительном образце // Оптический журнал. 2023. Т. 90. № 4. С. 92–104. http://doi.org/10.17586/1023-5086-2023-90-04-92-104

 

Mikerin S.L., Ugozhaev V.D. Analysis of the optical scheme of a tunable interferometer with exact fixation of the interference grating on a stationary photosensitive sample [in Russian] // Opticheskii Zhurnal. 2023. V. 90. № 4. P. 92–104. http://doi.org/10.17586/1023-5086-2023-90-04-92-104

For citation (Journal of Optical Technology):

test

Abstract:

Subject of study. A holographic system with a tunable convergence angle of two interfering light beams, based on a beam­splitting cube and designed for writing diffraction gratings, is investigated analytically. The initial light beam is introduced into the cube by means of a movable mirror, which performed both linear and angular displacement, due to which the convergence angle is tuned. For the combined movement of the movable mirror, a lever mechanism is used, based on an inclined guide. Aim of study. The aim of study is to find such a way of matching of both displacements of the movable mirror, in which the interference grating, created in the plane of complete mutual overlap of converging beams, would turn out to be immobile when the convergence angle is tuned. Method. The analysis of the path of light beams in the system was carried out within the framework of geometric optics. Main results. It was found that to fix the spatial position of the interference grating, the contact profile of the guide must be curvilinear. The exact functional dependence of the envelope of this profile is derived, and the tuning characteristics are calculated depending on the position of the photosensitive sample relative to the beam­splitting cube. Practical significance. Such a design of the studied holographic system opens up the possibility of using light beams of any diameter without system correction.

 

Acknowledgment: the work was carried out at the expense of a subsidy for financial support for the implementation of the state task of the Institute of Automation and Electrometry of the Siberian Branch of the Russian Academy of Sciences (Project No. 121031700030­4).

Keywords:

two-beam interferometer, beam-splitting cube, fixed mirrors, fixed photosensitive sample, interference grating, period tuning, interference lithography

OCIS codes: 080.0080, 080.2740, 080.4035, 120.3180, 120.4570, 120.4640, 220.2740

References:

1. Gleeson M.R., Sheridan J.T., Bruder F.-K., Rölle T., Berneth H., Weiser M.-S., Fäcke T. Comparison of a new self-developing photopolymer with AA/PVA based photopolymer utilizing the NPDD model // Optics Express. 2011. V. 19. № 27. P. 26325. https:doi.org/10.1364/OE.19.026325

2. Olivares-Pérez A., Toxqui-López S., Padilla-Velasco A.L. Nopal cactus (Opuncia Ficus-Indica) as a holographic material // Materials. 2012. V. 5. № 11. P. 2383–2402. https:doi.org/10.3390/ma5112383

3. Nimmi K.P., Pramitha V., Sreekumar K., Kartha C.S., Joseph R.J. Effect of concentration of DYE on the storage life of plane wave gratings on photopolymer film // J. of Applied Polymer Science. 2012. V. 125. № 2. P. 1238–1243. https:doi.org/10.1002/app.34963

4. Zhizhchenko A.Yu., Vitrik O.B., Kulchin Yu.N. Recording and thermo developing of latentphase holograms in the photosensitive polymer material based on anthracylacetonatoboron difluoride // Optical Materials. 2015. V. 46. P. 265–269. https:doi.org/10.1016/j.optmat.2015.04.030

5. Matusevich V., Tolstik E., Kowarschik R., Egorova E., Matusevich Yu.I., Krul L. New holographic polymeric composition based on plexiglass, polyvinyl butyral, and phenanthrenquinone // Optics Communications. 2013. V. 295. P. 79–83. https:doi.org/10.1016/j.optcom.2013.01.016

6. Smirnova T.N., Kokhtich L.M., Sakhno O.V., Stumpe J. Holographic nanocomposites for recording polymer-nanoparticle periodic structures: I. General approach to choice of components of nanocomposites and their holographic properties // Optics and Spectroscopy. 2011. V. 110. № 1. P. 129–136. https:doi.org/10.1134/S0030400X11010206

7. Smirnova T.N., Kokhtich L.M., Sakhno O.V., Stumpe J. Holographic nanocomposites for recording polymer-nanoparticle periodic structures: II. Mechanism of formation of polymer-nanoparticle bulk periodic structure and effect of parameters of forming field on structure efficiency // Optics and Spectroscopy. 2011. V. 110. № 1. P. 137–144. https:doi.org/10.1134/S0030400X11010218

8. Smirnova T.N., Sakhno O.V., Bezrodnyi V.I., Stumpe J.J. Nonlinear diffraction in gratings based on polymer-dispersed TiO2 nanoparticles // Applied Physics B. 2005. V. 80. № 8. P. 947–951. https:doi.org/10.1007/s00340-005-1873-7

9. Sakhno O.V., Smirnova T.N., Goldenberg L.M., Stumpe J. Holographic pattering of luminescent photopolymer nanocomposites // Material Science Engineering C. 2008. V. 28. № 1. P. 28–35. https:doi.org/10.1016/j.msec.2007.03.002

10. Nazarov M.M., Khaydukov K.V., Sokolov V.I., Khaydukov E.V. Laser formation of Bragg gratings in polymer nanocomposite materials // Quantum Electronics. 2016. V. 46. № 1. P. 29–32. https:doi.org/10.1070/QE2016v046n01ABEH015920

11. Klepp J., Pruner C., Tomita Y., Plonka-Spehr C., Geltenbort P., Ivanov S., Manzin G., Andersen K.H., Kohlbrecher J., Ellabban M.A., Fally M. Diffraction of slow neutrons by holographic SiO2 nanoparticle-polymer composite gratings // Physical Review A. 2011. V. 84. № 1. P. 013621. https:doi.org/10.1103/PhysRevA.84.013621

12. Smirnova T.N., Sakhno O.V., Yezhov P.V., Kokhtych L., Goldenberg L.M., Stumpe J. Amplified spontaneous emission in polymer-CdSe/ZnS-nanocrystal DFB structures produced by the holographic method // Nanotechnology. 2009. V. 20. № 25. P. 245707. https:doi.org/10.1088/0957-4484/20/24/245707

13. Mikhailov V., Elliott J., Wurtz G., Bayvel P., Zayats A.V. Dispersing light with surface plasmon polaritonic crystals // Physical Review Letters. 2007. V. 99. № 8. P. 083901. https:doi.org/10.1103/PhysRevLett.99.083901

14. Angervaks A.E., Van Bac D., Ivanov S.A., Okun R.A., Nikonorov N.V., Ryskin A.I., Gorokhovskii K.S., Granovskii V.A. A holographic prism based on photo-thermo-refractive glass: requirements and possibilities // Optics and Spectroscopy. 2017. V. 123. № 6. P. 970–976. https:doi.org/10.1134/S0030400X17120025

15. Zhang Z., Xu B., He J., Hou M., Bao W., Wang Y. High-efficiency inscription of fiber Bragg grating array with high-energy nanosecond-pulsed laser talbot inter-ferometer // Sensors. 2020. V. 20. P. 4307. https:doi.org/10.3390/s20154307

16. Konnov K.A., Varzhel S.V., Gribaev A.I., Cherepanov A.D.,·Doubenskaia M.A., Meshkovskiy I.K. Inscription of superimposed tilted fiber Bragg gratings // Optical and Quantum Electronics. 2020. V. 52. P. 169. https:doi.org/10.1007/s11082-020-02291-y

17. Poleshchuk, A.G., Kutanov, A.A., Bessmeltsev, V.P., Korolkov V.P., Shimanskii R.V., Malyshev A.I., Matochkin A.E., Goloshevskii N.V., Makarov K.V., Makarov V.P., Snimshchikov I.A., Sydyk Uulu N. Microstructuring of optical surfaces: Technology and device for direct laser writing of diffractive structures // Optoelectronics, Instrumentation and Data Processing. 2010. V. 46. № 2. P. 171–180. https:doi.org/10.3103/S8756699010020093

18. Mikerin S.L., Ugozhaev V.D. Reconfigurable holographic interferometer with fixed mirrors // Optoelectronics, Instrumentation and Data Processing. 2012. V. 48. № 4. P. 341–350. https:doi.org/10.3103/S8756699012040036

19. Ugozhaev V.D. Rotationally tunable two-beam interferometer with a fixed photosensitive element. Part I. Interferometer based on a beamsplitter cube // Optoelectronics, Instrumentation and Data Processing. 2016. V. 52. № 2. P. 153–160. https:doi.org/10.3103/S8756699016020072

20. Mikerin S.L., Ugozhaev V.D. Two-beam interferometer with a fixed photodetector tuned by a mobile mirror [in Russian] // Applied photonics. 2018. V. 5. № 3. P. 218–237. https:doi.org/10.15593/2411-4367/2018.3.07 21. Mikerin S.L., Ugozhaev V.D. A two-beam interferometer with the tuning of the interference pattern period by simulating its rotation // Precision Engineering. 2022. V. 78. P. 40–46. https:doi.org/10.1016/j.precisioneng.2022.07.004