ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-05-10-18

УДК: 666.22, 535.37, 535.42

Effect of neodymium ions on the parameters of volume Bragg gratings recorded in chlorine- containing photo-thermo-refractive glasses

For Russian citation (Opticheskii Zhurnal):

Нассер Х., Никоноров Н.В., Иванов С.А., Игнатьев А.И. Влияние ионов неодима на параметры брэгговских решеток, записанных в хлорсодержащих фототерморефрактивных стеклах // Оптический журнал. 2023. Т. 90. № 5. С. 10–18. http:doi.org/10.17586/1023-5086-2023-90-05-10-18

 

Nasser K., Nikonorov N.V., Ivanov S.A., Ignatiev A.I. Effect of neodymium ions on the parameters of volume Bragg gratings recorded in chlorine-containing photo-thermo-refractive glasses [in Russian] // Opticheskii Zhurnal. 2023. V. 90. № 5. P. 10–18. http:doi.org/10.17586/1023-5086-2023-90-05-10-18

For citation (Journal of Optical Technology):
Khaldoon Nasser, Nikolay V. Nikonorov, Sergey A. Ivanov, and Alexander I. Ignatiev, "Effect of neodymium ions on the parameters of volume Bragg gratings recorded in chlorine-containing photo-thermo-refractive glasses," Journal of Optical Technology. 90(5), 231-235 (2023)
Abstract:

The Subject of study is the chlorine-containing photo-thermo-refractive glass activated by neodymium ions. Aim of study is to study the effect of neodymium concentration on the process of photo-thermo-induced crystallization and the refractive index modulation amplitude of the volume Bragg grating recorded in the glass. Method. To obtain the values of refractive index modulation amplitude, volume Bragg gratings were recorded in this glass. The angular selectivity contours of the transmission beam were measured. The values of refractive index modulation amplitude were calculated by means of the coupled-waves theory. Main results. The maximum value of the refractive index modulation amplitude in the virgin undoped chlorine-containing photo-thermo-refractive glass was 1.6ґ10–3, and in the glass doped with neodymium was 0.6ґ10–3. Practical significance. The chlorine-containing photo-thermo-refractive glass activated with rare-earth ions gives an opportunity to record volume Bragg gratings and opens new possibilities for its application in integrated optics devices, such as distributed-feedback lasers.

Keywords:

photo-thermo-refractive glass, volume Bragg grating, neodymium, refractive index modulation amplitude, energy transfer

OCIS codes: 160.5335, 160.5690, 050.7330, 090.7330, 160.2750, 160.3130

References:

1.    Samson B.N., Borrelli N.F., Tick P.A. Efficient neodymium-doped glass ceramic fiber laser and amplifier // Opt. Lett. 2001. V. 26. № 3. P. 145–147. https:doi.org/10.1364/OL.26.000145

2.   Dussardier B., Blanc W., Peterka P. Tailoring of the local environment of active ions in rare-earth- and transition-metal-doped optical fibres, and potential applications: Selected topics on optical fiber technology // Eds. Yasin M., Harun S.W., Arof H. / IntechOpen. 2012. P. 28. https:doi.org/10.5772/30125

3.   Thornton J., Fountain W., Flint G., et al. Properties of neodymium laser materials // Appl. Opt. 1969. V. 8. № 6. P. 1087–1102. https:doi.org/10.1364/AO.8.001087

4.   Brown E., Hanley C.B., Hömmerich U., et al. Spectroscopic study of neodymium doped potassium lead bromide for mid-infrared solid state lasers // J. Lumin. 2013. V. 133. P. 244–248. https:doi.org/10.1016/j.jlumin.2011.12.023

5.   Ivanov S., Dubrovin V., Nikonorov N., et al. Origin of refractive index change in photo-thermo-refractive glass // J. Non-Crystall. Solids. 2019. V. 521. P. 119496. https:doi.org/10.1016/j.jnoncrysol.2019.119496

6.   Glebov L. Volume Bragg gratings in PTR glass — new optical elements for laser design // Advanced Solid State Lasers / Nara, Japan. January 27–30, 2008. P. 3.

7.    Nikonorov N., Ivanov S., Dubrovin V., et al. New photo-thermo-refractive glasses for holographic optical elements: Properties and applications // Holographic materials and optical systems / Eds. Naydenova I., Nazarova D., Babeva T. IntechOpen. 2017. https:doi.org/10.5772/66116

8.   Chukharev A.V. Spectral-luminescent properties of erbium photo-thermo-refractive glasses for integrally optical amplifiers and lasers [in Russian] // PhD Thesis. St. Petersburg State University of Information Technologies, Mechanics and Optics. St. Petersburg, Russia. 2001. P. 148.

9.   Nikonorov N., Przhevuskii A., Chukharev A. Effect of pumping on spectral characteristics of Er-doped glasses // Proc. SPIE. 2001. V. 4282. P. 10. https:doi.org/10.1117/12.424781

10. Ryasnyanskiy A., Vorobiev N., Smirnov V., et al. DBR and DFB lasers in neodymium- and ytterbium-doped photothermorefractive glasses // Opt. Lett. 2014. V. 39. № 7. P. 2156–2159. https:doi.org/10.1364/OL.39.002156

11.  Sato Y., Taira T., Smirnov V., et al. The study of spectroscopic properties of Nd: PTR glass // The European Conf. Lasers and Electro-Optics. Munich, Germany. June 14–19, 2009. P. 1–1.

12.  Nasser K., Aseev V., Ivanov S., et al. Spectroscopic and laser properties of erbium and ytterbium co-doped photo-thermo-refractive glass // Ceram. Internat. 2020. V. 46. № 16. P. 26282–26288. https:doi.org/10.1016/j.ceramint.2020.02.271

13.  Nikonorov N., Ivanov S.A., Kozlova D.A., et al. Effect of rare-earth-dopants on Bragg gratings recording in PTR glasses // Proc. SPIE. 2017. V. 10233. P. 8. https:doi.org/10.1117/12.2265716

14.  Nasser K., Ivanov S., Kharisova R., et al. A novel photo-thermo-refractive glass with chlorine instead of bromine for holographic application // Ceram. Internat. 2022. V. 48. № 18. P. 26750–26757. https:doi.org/10.1016/j.ceramint.2022.05.372

15.  Van De Hulst H.C., Twersky V. Light scattering by small particles // Phys. Today. 1957. V. 10. № 12. P. 28. https:doi.org/10.1063/1.3060205

16.  Beléndez A., Fimia A., Carretero L., et al. Study of angular responses of mixed amplitude-phase holographic gratings: Shifted Borrmann effect // Opt. Lett. 2001. V. 26. № 11. P. 786–788. https:doi.org/10.1364/OL.26.000786

17.  Kogelnik H. Coupled wave theory for thick hologram gratings // Bell System Technical J. 1969. V. 48. № 9. 2909–2947. https:doi.org/10.1002/j.1538-7305.1969.tb01198.x

18.       Glebova L., Ehrt D., Glebov L. Luminescence of dopants in PTR glass // European J. Glass Sci. and Technol. Part B. Physics and Chemistry of Glasses. 2007. V. 48. № 5. P. 328–331.