DOI: 10.17586/1023-5086-2023-90-05-19-28
УДК: 535.42
Influence of 3D the helical microstructure shape deviations on the properties of the generated vortex beam in the near diffraction zone
Full text on elibrary.ru
Publication in Journal of Optical Technology
Subject of study. The effect of various deviations of the helical microstructure shape and position associated with manufacturing and alignment errors on the properties of the formed vortex beam in the near diffraction zone (at a distance of about a dozen wavelengths) has been studied. Aim of study is determination of the shape deviations different types influence and the spiral microstructure position on the formed vortex beam properties. Method. Numerical simulation is carried out using the finite-difference time-domain method of both linear and nonlinear spiral phase plate. It allows us to take into account the real features of the 3D structure of the element under study, related to reflection and refraction on a complex surface. The height of the microrelief, the radius of the illuminating beam, and its displacement vary in a number of numerical experiments. Main results. As a result of the research, it was shown that 3D shape deviations of the helical microstructure, for example, the nonlinearity of the relief, leads to a distortion of the vortex dependence of the phase and breaks the annular intensity of the formed beam. However, in this case, the overall stability of the singular beam structure is preserved, which is completely destroyed at the misalignment of the illuminating beam and the optical element. A change in the height of the microrelief leads to a change in both the topological charge and the shape of the beam. As for the influence of the aperture radius of the input Gaussian beam, by changing the aperture radius, it is possible to scale the formed vortex beams. Misalignment in the optical system leads to the loss of the annular structure of the vortex beam and its invariant properties. Practical significance. The obtained results can be useful in applying of adjustable optical elements, as well as microstructures formed in photosensitive media. The main reasons for the distortion of the formed beam structure are both technological inaccuracies during etching, including the height mismatch and changes in the structure of the zones of the diffractive optical element, and alignment errors of the optical system, including the misalignment of the illuminating beam and the optical element. It should be noted that the characteristics of the 3D the optical elements structure most noticeably affect the diffraction pattern in the near zone.
generalized spiral phase plate, vortex beams, near diffraction zone, microstructure, diffractive optical element
OCIS codes: 050.1970, 260.1960
References:- Coullet P., Gil, L., Rocca, F. Optical vortices // Opt. Commun. 1989. V. 73. P. 403–408. http://doi.org/10.1038/s4137701901942
- Khonina S.N., Kotlyar V.V., Shinkaryev M.V., et al. The phase rotor filter // J. Mod. Opt. 1992. V. 39. № 5. P. 1147–1154. https://doi.org/10.1080/09500349214551151
- Davis J.A., McNamara D.E., Cottrell D.M., et al. Image processing with the radial Hilbert transform: Theory and experiments // Opt. Lett. 2000. V. 25. P. 99–101. https://doi.org/10.1364/OL.25.000099
- Shen Y., Wang X., Xie Z., et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities // Light Sci. Appl. 2019. V. 8. P. 90. https://doi.org/10.1038/s4137701901942
- Порфирьев А.П., Кучмижак А.А., Гурбатов С.О. и др. Фазовые сингулярности и оптические вихри в фотонике // УФН. 2022. Т. 192. № 8. С. 841–866. http://doi.org/10.3367/UFNr.2021.07.039028. Porfirev A.P., Kuchmizhak A.A., Gurbatov S.O., et al. Phase singularities and optical vortices in photonics // Phys. Usp. 2022. V. 192. № 8. P. 841–866. https://doi.org/10.3367/UFNe.2021.07.039028
- Oemrawsingh S.S.R., Van Houwelingen J.A.W., Eliel E.R., et al. Production and characterization of spiral phase plates for optical wavelengths // Appl. Opt. 2004. V. 43. P. 688–694. https://doi.org/10.1364/AO.43.000688
- Wang J., Cao A., Zhang M., et al. Study of characteristics of vortex beam produced by fabricated spiral phase plates // IEEE Photon. J. 2016. V. 8. № 2. P. 1. https://doi.org/10.1109/JPHOT.2016.2540362
- Sugioka K. and Cheng Ya. Femtosecond laser threedimensional micro and nanofabrication // 2014. Appl. Phys. Rev. V. 1. P. 041303. https://doi.org/10.1063/1.4904320
- Yu Y.J., Noh H., Hong M.H., et al. Focusing characteristics of optical fiber axicon microlens for nearfield spectroscopy: dependence of tip apex angle // Opt. Commun. 2006. V. 267. № 1. P. 264–270. https://doi.org/10.1016/J.OPTCOM.2006.06.044
- Žukauskas A., Malinauskas M., Brasselet E. Monolithic generators of pseudonondiffracting optical vortex beams at the microscale // Appl. Phys. Lett. 2013. V. 103. № 18. P. 181122. https://doi.org/10.1063/1.4828662
- SanchezPadilla B., Žukauskas A., Aleksanyan A., et al. Wrinkled axicons: shaping light from cusps // Opt. Exp. 2016. V. 24. № 21. P. 24075–24082. https://doi.org/10.1364/OE.24.024075
- Khonina S.N., Degtyarev S.A., Savelyev D.A., et al. Focused, evanescent, hollow, and collimated beams formed by microaxicons with different conical angles // Opt. Exp. 2017. V. 25. № 16. P. 19052–19064. https://doi.org/10.1364/OE.25.019052
- Gorelick S., Paganin D.M., Marco A. Axilenses: Refractive microoptical elements with arbitrary exponential profiles // Appl. Photon. 2020. V. 5. P. 106110. https://doi.org/10.1063/5.0022720
- Banerji S., Cooke J., and SensaleRodriguez B. Impact of fabrication errors and refractive index on multilevel diffractive lens performance // Sci. Rep. 2020. V. 10. P. 14608. https://doi.org/10.1038/s41598020714802
- Хонина С.Н., Савельев Д.А., Серафимович П.Г. и др. Дифракция на бинарных микроаксиконах в ближней зоне // Оптический журнал. 2012. Т. 79. № 10. С. 22–29. Khonina S.N., Savelyev D.A., Serafimovich P.G., et al. Diffraction at binary microaxicons in the near field // J. Opt. Technol. 2012. V. 79. № 10. P. 626–631. https://doi.org/10.1364/JOT.79.000626
- Degtyarev S.A., Porfirev A.P., and Khonina S.N. Photonic nanohelix generated by a binary spiral axicon // Appl. Opt. 2016. V. 55. № 12. P. B44–B48. https://doi.org/10.1364/AO.55.000B44
- Khonina S.N., Krasnov S.V., Ustinov A.V., et al. Refractive twisted microaxicons // Opt. Lett. 2020.V. 45. № 6. P. 1334–1337. https://doi.org/10.1364/OL.386223
- Berry M.V. Optical vortices evolving from helicoidal integer and fractional phase steps // J. Opt. A: Pure Appl. Opt. 2004. V. 6. P. 259–268. https://doi.org/10.1088/14644258/6/2/018
- Leach J., Yao E., and Padgett M.J. Observation of the vortex structure of a noninteger vortex beam // New J. Phys. 2004. V. 6. P. 71. https://doi.org/10.1088/13672630/6/1/071
- Khonina S.N., Podlipnov V.V., Karpeev S.V., et al. Spectral control of the orbital angular momentum of a laser beam based on 3D properties of spiral phase plates fabricated for an infrared wavelength // Opt. Exp. 2020. V. 28. № 12. P. 18407–18417. https://doi.org/10.1364/OE.396199
- Korolkov V.P., Nasyrov R.K., Shimansky R.V. Zoneboundary optimization for direct laser writing of continuousrelief diffractive optical elements // Appl. Opt. 2006. V. 45. № 1. P. 53–62. https://doi.org/10.1364/AO.45.000053
- Korolkov V.P., Nasyrov R.K., Sametov A.R., et al. Optimization of halftone technology for diffractive microlens fabrication // Proc. SPIE. 2011. V. 7957. P. 795710. https://doi.org/10.1117/12.874432
- Скиданов Р.В., Хонина С.Н., Морозов А.А. Оптическое вращение микрочастиц в гипергеометрических пучках, сформированных дифракционными оптическими элементами с многоуровневым микрорельефом // Оптический журнал. 2013. Т. 80. № 10. С. 3–8. Skidanov R.V., Khonina S.N., Morozov A.A. Optical rotation of microparticles in hypergeometric beams formed by diffraction optical elements with multilevel microrelief // J. Opt. Technol. 2013. V. 80. № 10. P. 585–589. https://doi.org/10.1364/JOT.80.000585.
- Poleshchuk A.G., Korolkov V.P., Veiko V.P., et al. Laser technologies in microoptics. Part 2. Fabrication of elements with a threedimensional profile // Optoelectron. Instrument. Proc. 2018. V. 54. № 2. P. 113–126. https://doi.org/10.3103/S8756699018020012
- Beijersbergen M.W., Coerwinkel R.P.C., Kristensen M., et al. Helicalwavefront laser beams produced with a spiral phaseplate // Opt. Commun. 1994. V. 112. P. 321–327. https://doi.org/10.1016/00304018(94)906386
- Sueda K., Miyaji G., Miyanaga N., et al. LaguerreGaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses // Opt. Exp. 2004. V. 12. № 15. P. 3548–3553. https://doi.org/10.1364/OPEX.12.003548
- Watanabe T., Fujii M., Watanabe Y., et al. Generation of a doughnutshaped beam using a spiral phase plate // Rev. Sci. Instrum. 2004. V. 75. № 12. P. 5131–5135. https://doi.org/10.1063/1.1819555
- Li P., Liu S., Peng T., et al. Spiral autofocusing Airy beams carrying powerexponentphase vortices // Opt. Exp. 2014. V. 22. P. 7598–7606. https://doi.org/10.1364/OE.22.007598
- Lao G., Zhang Z., and Zhao D. Propagation of the powerexponent phase vortex beam in paraxial ABCD system // Opt. Exp. 2016. V. 24. P. 18082–18094. https://doi.org/10.1364/OE.24.018082
- Khonina S.N., Ustinov A.V., Logachev V.I., et al. Properties of vortex light fields generated by generalized spiral phase plates // Phys. Rev. A. 2020. V. 101. P. 043829. https://doi.org/10.1103/PhysRevA.101.043829
- Ustinov A.V., Khonina S.N., Khorin P.A., et al. Control of the intensity distribution along the light spiral generated by a generalized spiral phase plate // JOSA B. 2021. V. 38. № 2. P. 420–427. https://doi.org/10.1364/JOSAB.408884
- Khorin P.A., Porfirev A.P. Modeling diffraction of a polarized light by threedimensional nonlinear spiral phase in the near zone // Proc. SPIE. 2021. V. 11846. P. 118460O. https://doi.org/10.1117/12.2588180
- Khorin P.A., Ustinov A.V. Simulation of the action of a threedimensional nonlinear spiral phase plate in the near diffraction zone // J. Phys. Conf. Ser. 2020. V. 1695. P. 012165. https://doi.org/10.1088/17426596/1695/1/012165
- Rozas D., Law C.T., and Swartzlander G.A. Propagation dynamics of optical vortices // JOSA B. 1997. V. 14. P. 3054–3065. https://doi.org/10.1364/JOSAB.14.003054
- Khonina S.N., Porfirev A.P., Ustinov A.V. Diffraction patterns with mth order symmetry generated by sectional spiral phase plates // J. Opt. 2015. V. 17. P. 1256078pp. https://doi.org/10.1088/20408978/17/12/125607
- Zhao X., Zhang J., Pang X., et al. Properties of a strongly focused Gaussian beam with an offaxis vortex // Opt. Commun. 2017. V. 389. P. 275–282. https://doi.org/10.1016/J.OPTCOM.2016.12.050
- Khonina S.N., Ustinov A.V. Focusing of shifted vortex beams of arbitrary order with different polarization // Opt. Commun. 2018. V. 426. P. 359–365. https://doi.org/10.1016/j.optcom.2018.05.070
- Rotschild C., Zommer S., Moed S., et al. Adjustable spiral phase plate // Appl. Opt. 2004. V. 43. P. 2397–2399. https://doi.org/10.1364/AO.43.002397
- OjedaCastaneda J., Ledesma S., and GómezSarabia C.M. Tunable apodizers and tunable focalizers using helical pairs // Photon. Lett. Pol. 2013. V. 5. P. 20–22. https://doi.org/10.4302/PHOTON
- Grewe A. and Sinzinger S. Efficient quantization of tunable helix phase plates // Opt. Lett. 2016. V. 41. P. 4755–4758. https://doi.org/10.1364/OL.41.004755
- Priimagi A., Shevchenko A. Azopolymerbased micro and nanopatterning for photonic applications // J. Polym. Sci. B. Polym. Phys. 2014. V. 52. P. 163–182. https://doi.org/10.1002/POLB.23390
- Syubaev S., Zhizhchenko A., Vitrik O., et al. Chirality of laserprinted plasmonic nanoneedles tunable by tailoring spiralshape pulses // Appl. Surf. Sci. 2019. V. 470. P. 526–534. https://doi.org/10.1016/j.apsusc.2018.11.128
- Porfirev A.P., Khonina S.N., Ivliev N.A., et al. Writing and reading with the longitudinal component of light using carbazolecontaining azopolymer thin films // Sci. Rep. 2022. V. 12. P. 3477 (12 pp). https://doi.org/10.1038/s41598022074409
- Bian S., Williams J.M., Kim D.Y., et al. Photoinduced surface deformations on azobenzene polymer films // J. Appl. Phys. 1999. V. 86. № 8. P. 4498–4508. https://doi.org/10.1063/1.371393
- Poplipnov V.V., Ivliev N.A., Khonina S.N., et al. Investigation of photoinduced formation of microstructures on the surface of carbaseolecontaining azopolymer depending on the power density of incident beams // Comput. Opt. 2018. V. 42 № 5. P. 779–785. https://doi.org/10.18287/241261792018425779785
- Porfirev A.P., Khonina S.N., Khorin P.A., et al. Polarizationsensitive direct laser patterning of azopolymer thin films with vortex beams // Opt. Lett. 2022. V. 47. № 19. P. 5080–5083. https://doi.org/10.1364/OL.471236.