DOI: 10.17586/1023-5086-2023-90-05-29-40
УДК: 535.015
Modeling of the focal-pishaper with the ray-mapping method
Full text on elibrary.ru
Publication in Journal of Optical Technology
Subject of study. modified ray mapping method for the synthesis of two-component shaper. These shapers are used to obtain a uniform intensity flat-top profile. Aim of study. Development and approbation of an algorithm for the method of simultaneous synthesis of a pair of a two-component laser radiation Focal-piShaper. Method. The algorithm for calculating the design parameters of a pair of freeform optical surfaces is based on simultaneous ray tracing in the forward and reverse directions by modifying the ray-mapping method. Main results. It is shown that the implemented algorithm works efficiently enough with a large distance between the components. The calculated model of the beam-shaper has a residual transverse aberration Dyўmax < 0.82 mrad, the mean-square deviation of the intensity distribution of the output radiation from the required one is no more than 1% for the refractive surface tolerance equal to 0.05 µm. The effective conservation length of the output beam is up to 50 mm. Practical significance. The developed algorithm for the synthesis of the optical system of the laser Focal-piShaper uses a preset distribution of radiation intensity on the input and output target surfaces, can be used to design laser beam-shapers forming various intensity distribution profiles, that confirms its versatility.
laser beam-shaper, freeforms, optical system design, ray-mapping method, splines
OCIS codes: 080.0080, 080.4225, 140.0140, 080.1753
References:1. Wagno A.B., KyungOe K. Characterization of laser beams: Theory and application in laser-assisted bonding process // Opt. Eng. 2021. V. 60. № 6. P. 19. https:doi.org/10.1117/1.OE.60.6.060801
2. Flamm D., Grossmann G.D., Sailer M., et al. Structured light for ultrafast laser micro- and nanoprocessing // Opt. Eng. 2021. V. 60. № 2. P. 25 https:doi.org/10.1117/1.OE.60.2.025105
3. Wolfram R. Lasers for industrial production processing: Tailored tools with increasing flexibility // Proc. SPIE. 2012. V. 8239. P. 8. https:doi.org/10.1117/12.906643
4. Gajda J., Romaniuk S.R. Laser technology 2018: Progress and applications of lasers // Thirteenth Symp. Laser Technol. Jastarnia, Poland. September 24–28, 2018. 20 p.
5. Laskin A.V., Laskin V.V. Variable beam shaping with using the same field mapping refractive beam shaper // Proc. SPIE. 2012. V. 8236 P. 9. https:doi.org/10.1117/12.903606
6. Laskin A.V., Romashova V.B., Bolt S.A., Burov N.V. Laser beam intensity profile shapers [in Russian] // Photonics. 2018. V. 12. № 2(70). P. 178–190. https:doi.org/10.22184/1993-7296.2018.70.2.178.190
7. Romero L.A., Dickey F.M. Lossless laser beam shaping // JOSA A. 2000. V. 13. № 4. P. 751–760. https:doi.org/10.1364/JOSAA.13.000751
8. Dickey F.M., Holswade S.C. Laser beam shaping: Theory and techniques. N.Y.: Marcel Dekker, 2000. 427 p.
9. Laskin A.V., Laskin V.V., Ostrun A.B. Refractive beam shapers for optical systems of lasers // Proc. SPIE. 2015. V. 9346 P. 10. https:doi.org/10.1117/12.2080864
10. Laskin A.V., Šiaulys N., Šlekys G., Laskin V.V. Beam shaping unit for micromachining // Proc. SPIE. 2013. V. 8843. P. 18. https:doi.org/10.1117/12.2025985
11. Edmund Beam Shapers. Catalog of goods [Electronic resource]. Access Mode: https://www.edmundoptics.com/f/flat-top-beam-shapers/ (date of the application 20.10.2022).
12. Laskin A.V., Laskin V.V. Refractive beam shapers for material processing with high power single mode and multimode lasers // Proc. SPIE. 2013. V. 8600. P. 11. https:doi.org/10.1088/1742-6596/276/1/012171
13. Goodman J.W. Introduction to Fourier optics. N.Y.: McGraw-Hill, 1996. 491 p.
14. Smith W.J. Modern optical engineering. N.Y.: McGraw-Hill, 2000. 641 p.
15. Laskin A.V., Laskin V.V. Beam shaping to generate uniform laser light sheet and linear laser spots // Proc. SPIE. 2013. V. 8843. P. 12. https:doi.org/10.1117/12.2021459
16. Nikolov D.K., Bauer A., Cheng F., et al. Metaform optics: Bridging nanophotonics and freeform optics // Sci. Advances. 30 Apr. 2021. V. 7. № 18. https:doi.org/10.1126/sciadv.abe5112
17. Kochengin S. and Oliker V. Determination of reflector surfaces from near-field scattering data // Inverse Problems. 1997. V. 13. № 2. P. 363–373. https:doi.org/10.1088/0266-5611/13/2/011
18. Brix K., Hafizogullari Y., Platen A. Solving the Monge–Ampère equations for the inverse reflector problem // Mathematical Models and Meth-ods in Appl. Sci. 2015. V. 25. № 5. P. 803–837. https:doi.org/10.1142/S0218202515500190
19. Brix K., Hafizogullari Y., Platen A. Designing illumination lenses and mirrors by the numerical solution of Monge–Ampere equations // JOSA A. 2015. V. 32. № 11. P. 2227–2236. https:doi.org/10.1364/JOSAA.32.002227
20. Boonkkamp J.H., Thije M., Romijn L.B., et al. Generalized Monge–Ampère equations for illumination freeform design // Proc. SPIE. 2019. V. 1118504. P. 19. https:doi.org/10.1117/12.2536482
21. Rengmao Wu, Peng Liu, Yaqin Zhang, et al. A mathematical model of the single freeform surface design for collimated beam shaping // Opt. Exp. 2013. V. 21. № 18. P. 16. https:doi.org/10.1364/OE.21.020974
22. Wendel S., Kurz J., Neumann C. Optimizing nonimaging freeform optics using freeform deformation // Optical Systems Design 2012. Barcelona, Spain. November 26–29, 2012. P. 145–151.
23. Benítez P., Miñano J.C., Blen J., et al. Simultaneous multiple surface optical design method in three dimensions // Opt. Eng. 2004. V. 43. № 7. P. 1489–1501. https:doi.org/10.1117/1.1752918
24. Elmer W.B. The optical design of reflectors. 2nd ed. N.Y.: Wiley, 1980. 290 p.
25. Parkin W.A. Illumination lenses designed by extrinsic differential geometry // Proc. SPIE. 1998. Kona, HI, United States. https:doi.org/10.1117/12.322042
26. Voznesenskaya A., Mazur I., Krizskiy P. Synthesis of freeform refractive surfaces forming various radiation patterns using interpolation // Proc. SPIE. Nonimaging Optics: Efficient Design for Illumination and Solar Concentration XIV, 103790C. September 7, 2017. https:doi.org/10.1117/12.2273196
27. Mazur Ya.V. Development of wavefront compensators based on freeform surfaces for testing of aspherical mirrors // Academic Dissert. Сandidate of Engineering. (PhD thesis). National Research University ITMO, St. Petersburg. 2022. 221 p.
28. Bäuerle A., Bruneton A., Wester R., et al. Algorithm for irradiance tailoring using multiple freeform optical surfaces // Opt. Exp. 2012. V. 20. № 13. P. 14477–14485. https:doi.org/10.1364/OE.20.014477
29. Mao X., Li H., Han Y., Luo Y. Polar-grids based source-target mapping construction method for designing freeform illumination system for a lighting target with arbitrary shape // Opt. Exp. 2015. V. 23. № 4. P. 4313–4328. https:doi.org/10.1364/OE.23.004313
30. Bruneton A., Bäuerle A., Wester R., et al. Limitations of the ray mapping approach in freeform optics design // Opt. Lett. 2013. V. 38. № 11. P. 1945–1947. https:doi.org/10.1364/OL.38.001945
31. Rodionov S.A. Automation design of optical systems [in Russian]. Leningrad: Mashinostroenie Publisher, 1982. 270 p.
32. Mazur Ya.V., Voznesenskaya A.O. Synthesis of freeform optical surfaces using neural networks // J. Opt. Technol. 2022. V. 89. № 2. P. 89–93. https:doi.org/10.1364/JOT.89.000089
33. Linnik Y.V. The method of least squares and the foundations of math-statistical theory observation processing [in Russian]. 2nd ed. Leningrad: Physmathgis Publisher, 1962. 336 p.
34. Grishchenko N.V., Semerikov S.A., Kharadzhyan A.A., et al. Comparative analysis of approximation methods [in Russian]. Krivoy Rog: Krivoy Rog State Pedagogical Institute, 1998. 26 p.
35. ZEMAX 13. Optical Design Program. User’s Manual. June 24, 2015. 805 p.
36. Piegl L., Tiller W. The NURBS Book. 2nd ed. Berlin: Springer, 1997. 646 p.