ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-05-03-09

УДК: 621.373:535

All-optical shaping of a 3D self-induced transparency soliton in 87Rb vapours

For Russian citation (Opticheskii Zhurnal):
Багаев С.Н., Мехов И.Б., Чехонин И.А., Чехонин М.А. Полностью оптическое формирование свойств трехмерного солитона самоиндуцированной прозрачности в парах 87Rb // Оптический журнал. 2023. Т. 90. № 5. С. 3–9. http:doi.org/10.17586/1023-5086-2023-90-05-03-09   Bagaev S.N., Mekhov I.B., Chekhonin I.A., Chekhonin M.A. All-optical shaping of a 3D self-induced transparency soliton in 87Rb vapours [in Russian] // Opticheskii Zhurnal. 2023. V. 90. № 5. P. 3–9. http:doi.org/10.17586/1023-5086-2023-90-05-03-09
For citation (Journal of Optical Technology):
Sergey N. Bagaev, Igor B. Mekhov, Igor A. Chekhonin, and Mikhail A. Chekhonin, "Simultaneous generation of N coherent pulses of various areas under self-diffraction in 87Rb vapors," Journal of Optical Technology. 90(5), 249-253 (2023)
Abstract:

Subject of study. Three-dimensional solitons of the theory of self-induced transparency of laser pulses with a converging cylindrical wave front and different transverse spatial profiles of the pulse field in 87Rb vapor (resonant transition D2, wavelength 780.24 nm). Aim of study. Experimental study of three-dimensional solitons of self-induced transparency of laser pulses for  development of  new devices prototypes for resonant quantum microwave photonics using laser signal processing methods in the microwave region of the spectrum. Method. In the caustic of a focused beam of a laser pump pulse with a cylindrical wave front, a transverse spatial profile of the electric field strength of a special shape is created. The computer generated holograms developed by us can be used to create an arbitrary profile. Main results. The properties of a three-dimensional self-induced transparency soliton are studied for various detuning frequencies of the input pulse field with respect to atomic resonance. The maximum laser pulse power was 8.5 mW; the pulse duration was 4–5 ns. The time resolution of the recording system is 27 ps. It is shown that the all-optical control of the carrier frequency of the input pulse determines the properties of the output pulse — compression of the pulse duration (generation of a strobe pulse), the value of the soliton delay in time, the time shift of the carrier frequency of the soliton. Practical significance. The results obtained in the study of the properties of three-dimensional self-induced transparency solitons will serve as the basis for the development of prototypes of signal processing devices using low-power laser diodes.

Keywords:

self-induced transparency, soliton, quantum microwave photonics, resonant medium, computer generated hologram

OCIS codes: 060.5530, 050.1590, 060.5625

References:

1.    Allen L., Eberly J.H. Optical resonance and two-level atoms. N.Y.: Wiley, 1975. 256 p.

2.   Slusher H.E., Gibbs H.M. Self-induced transparency in atomic rubidium // Phys. Rev. A. 1972. V. 5. № 4. P. 1634–1659. https:doi.org/10.1103/PhysRevA.5.1634

3.   Slusher H.E., Gibbs H.M. Self-induced transparency in atomic rubidium (ERRATA) // Phys. Rev. A. 1972. V. 6. № 3. P. 1255–1257. https:doi.org/10.1103/PhysRevA.6.1255.3

4.   Bol'shov L.A., Likhanskii V.V. Influence of detuning from resonance on the instability of coherent light pulses in absorbing media [in Russian] // ZETF. 1978. V. 75. № 6. P. 2047–2053.

5.   Egorov V.S., Reutova N.M. Characteristics of coherent propagation of a superradiant pulse through an optically dense resonantly absorbing medium // Opt. and Spectrosс. 1989. V. 66. № 6. P. 716–718.

6.   Kozlov V.V., Fradkin E.E. Theory of self-induced transparency in a focused light beam [in Russian] // Pis'ma Zh. Eksp. Teor. Fiz. 1991. V. 54. № 5. P. 266–269.

7.    Egorov V.S., Fradkin E.E., Kozlov V.V., et al. Supertransparency of a resonantly absorbing medium for short pulses with a nonplane wave front // Laser Phys. 1992. V. 2. P. 973.

8.   Kozlov V.V., Fradkin E.E. Propagation of a threedimensional optical soliton in a resonant gaseous medium [in Russian] // ZETF. 1993. V. 103. P. 1902–1913.

9.   Kozlov V.V., Fradkin E.E. Distortion of self-induced-transparency solitons as a result of self-phase modulation in ion-doped fibers // Opt. Lett. 1995. V. 20. № 21. P. 2165–2167. https:doi.org/10.1364/OL.20.002165

10. Kozlov V.V., Fradkin E.E., Egorov V.S., et al. Supertransparency [in Russian] // ZETF. 1996. V. 110. P. 1688–1711.

11.  Blaauboer M., Malomed B.A., Kurizki G. Spatiotemporally localized multidimensional solitons in self-induced transparency media // Phys. Rev. Lett. 2000. V. 84. № 9. P. 1906–1909. https:doi.org/10.1103/PhysRevLett.84.1906

12.  Gibbs H.M., Bolger B., Mattar F.P., et al. Coherent on-resonance self-focusing of optical pulses in absorbers // Phys. Rev. Lett. 1976. V. 37. № 26. P. 1743. https:doi.org/10.1103/PhysRevLett.37.1743

13.  Mattar F.P., Forster G., Toschek P.E. Coherent on-resonance self-focusing of optical pulses // Sov. J. Quant. Electron. 1978. V. 8. P. 1032. https:doi.org/10.1070/QE1978v008n08ABEH010605

14.  Arkhipov R.M., Arkhipov M.V., Egorov V.S., et al. Radiation of a resonant medium excited by a periodically phase-modulated laser in the regime of strong coupling between the field and the matter // Opt. and Spectrosc. 2019. V. 127. № 6. P. 1062–1069. http://dx.doi.org/10.1134/S0030400X19120038

15.  Arkhipov R.M., Arkhipov M.V., Egorov V.S., et al. The new ultra high-speed all-optical coherent streak-camera // J. Phys.: Conf. Ser. 2015. V. 643. P. 012029. http://dx.doi.org/10.1088/1742-6596/643/1/012029

16.       Bagayev S.N., Averchenko V.A., Chekhonin I.A., et al. Experimental new ultra-high-speed all-optical coherent streak-camera // J. Phys.: Conf. Ser. 2020. V. 1695. P. 012129 (1–6). http://dx.doi.org/10.1088/1742-6596/1695/1/012129onf. Ser. 2020. V. 1695. P. 012129 (1–6). http://dx.doi.org/10.1088/1742-6596/1695/1/012129