DOI: 10.17586/1023-5086-2023-90-05-63-75
УДК: 681.78
Comparative analysis of design algorithms for optical systems using composite holographic optical elements
Full text on elibrary.ru
Publication in Journal of Optical Technology
Ахметов Д.М., Муслимов Э.Р., Харитонов Д.Ю., Павлычева Н.К., Гуськов И.А., Гильфанов А.Р., Терентьев А.И. Сравнительный анализ алгоритмов расчета оптических систем с использованием композитных голограммных оптических элементов // Оптический журнал. 2023. Т. 90. № 5. С. 63–75. http://doi.org/10.17586/10235086202390056375
Akhmetov D.M., Muslimov E.R., Kharitonov D.Y., Pavlychevа N.K., Guskov I.A., Gilfanov A.R., Terentyev A.I. Comparative analysis of design algorithms for optical systems using composite holographic optical elements [in Russian] // Opticheskii Zhurnal. 2023. V. 90. № 5. P. 63–75. http://doi.org/10.17586/10235086202390056375
Subject of study. Two algorithms for design of an optical scheme based on a composite hologram optical element aimed at optimizing the diffraction efficiency, the first of which is based on the successive partitioning of the hologram element, the second algorithm is based on averaging locally optimized hologram parameters. The aims of this work are to develop algorithms for determining the configuration of a composite hologram and its parameters in each of the subapertures, as well as their further use to achieve a high diffraction efficiency uniformly distributed over the working spectral range of the device Method. The algorithms are based on the application of the Welford equation for ray tracing through a hologram and the Kogelnik theory for simultaneous calculation of diffraction efficiency in several subapertures. Main results. As a demonstrative example, a design and analysis of a spectrograph optical scheme operating in the near infrared region with a high angular dispersion is given. A diverging beam with a numerical aperture of 0.14 is fed to the input of the spectrograph. The spectrograph operates in the wavelength range from 830 to 870 nm, the center of which corresponds to the emission wavelength of a standard laser source. The optical system consists of a collimator, two volumephase transmission holographic gratings, a camera lens, and a photodetector. It is shown that the greatest gain in diffraction efficiency for a composite hologram of three rectangular subapertures in comparison with a single hologram grating without parameters optimization reaches 5.1 times and is observed at the longwavelength edge of the spectrum. Practical significance. The proposed algorithms will allow one to determine the optimal number, shape and location of the composite hologram subapertures. The obtained results will make it possible to design a spectrograph characterized by an increased and more uniform image brightness over the entire working range.
holographic diffraction grating, composite holographic element, diffraction efficiency, near infrared domain
OCIS codes: 050.2065, 230.1950, 090.2820
References:- Palmer C., Loewen E. Diffraction gratings handbook. Rochester: Newport Corp., 2014. 271 p.
- Caulfield H.J. Handbook of optical holography. N.Y.: Academic Press, 1979. 654 p.
- Muslimov E., Akhmetov D., Kharitonov D., et al. Composite waveguide holographic display // Proc. SPIE. V. 12138. Optics, Photonics and Digital Technologies for Imaging Applications VII, 121380S (17 May 2022). https:doi.org/10.1117/12.2621064
- Akhmetov D.M., Muslimov E.R., Kharitonov D.Y., et al. Comparative analysis of algorithms for calculating optical systems using composite hologram optical elements [in Russian] // XIX Internat. Conf. on Holography and Applied Optical Technologies — HOLOEXPO-2022 Science and Practice. (Abstracts of reports). St. Petersburg, Russia. 2022. Р. 125–131.
- Muslimov E., Nureev I., Morozov O., et al. Spectrographs with high angular dispersion: design and optimization approach // Opt. Eng. 2018. V. 57. № 12. Р. 125104. http:doi.org/10.1117/1.OE.57.12.125104
- Trager F. Springer handbook of lasers and optic. N.Y.: Springer, 2007. 1342 p.
- Rose B., Rasmussen T., Khalfaoui C., et al. Wavelength division multiplexed device // US Patent 6 978 062 B2. 2001. Publ. Dec. 20, 2005.
- Bastue J., Herholdt-Rasmussen N., Rasmussen M., et al. Transmission spectrometer with improved spectral and temperature characteristics // US Patent 7 180 590 B2. 2003. Publ. Feb. 20, 2007.
- Landsberg G.S. Optics: A textbook [in Russian]. 6th ed. Moscow: FIZMATLIT Publisher, 2010. 848 p.
10. Welford W. A vector raytracing equation for hologram lenses of arbitrary shape // Opt. Commun. 1975. V. 14. P. 322–323. http:doi.org/10.1016/0030-4018(75)90327-23
11. Kogelnik H. Coupled wave analysis for thick hologram gratings // Bell Syst. Tech. J. 1969. V. 48. P. 2909–2947. http:doi.org/10.1002/J.1538-7305.1969.TB01198.X
12. Kidger M.J. Use of the Levenberg–Marquardt (damped least-squares) optimization method in lens design // Opt. Eng. 1993. V. 32. № 8. Р. 1731–1740. https:doi.org/10.1117/12.145076
13. Byrd R.H., Gilbert J.C., and Nocedal J. A Trust region method based on interior point techniques for nonlinear programming // Mathematical Programming. 2000. V. 89. № 1. Р. 149–185. https:doi.org/10.1007/PL00011391
- Paysakhson, I.V. Optics of spectral devices [in Russian]. 2nd ed. Leningrad: Mashinostroenie Publisher, 1975. 312 p.