ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-06-25-37

УДК: 681.787

Absolute rangefinder based on femtosecond laser with the possibility of traceability to the standard of time and frequency

For Russian citation (Opticheskii Zhurnal):

Соколов Д.А., Козаченков С.А. Абсолютный дальномер на основе фемтосекундного лазера с возможностью прослеживаемости к эталону времени и частоты // Оптический журнал. 2023. Т. 90. № 6. С. 25–37. http://doi.org/10.17586/1023-5086-2023-90-06-25-37

 

D.A. Sokolov, S.A. Kozachenkov. Absolute rangefinder based on femtosecond laser with the possibility of traceability to the standard of time and frequency [In Russian] // Opticheskii Zhurnal. 2023. V. 90. № 6. P. 25–37. http://doi.org/10.17586/1023-5086-2023-90-06-25-37

For citation (Journal of Optical Technology):

Denis Sokolov and Sergey Kozachenkov, "Femtosecond laser-based absolute rangefinder with the possibility of traceability to the time and frequency standard," Journal of Optical Technology. 90(6), 302-309 (2023)

Abstract:

Subject of the study. Development and study of the metrological characteristics of an absolute rangefinder based on femtosecond laser designed to calibrate high­precision laser rangefinders on a 60­meter laboratory comparator and in the field in the range from 2.5 m to 500 m. Purpose of the work. Improving the accuracy of a unit of length reproduction in the range from 2.5 m to 500 m to ensure the uniformity of measurements during the determination of metrological characteristics of optoelectronic length measuring instruments. The method consists in using of a femtosecond laser as a highly stable coherent radiation source in an unbalanced Michelson interferometer. The pulse repetition frequency of the laser used is stabilized by a phase­locked system based on the rubidium frequency standard, thus providing for metrological traceability to the standard of time and frequency. At the same time, the interference of laser pulses makes it possible to reproduce the unit of length — a meter in accordance with the international definition of the meter. Main results. The actual problem of determining the metrological characteristics of optoelectronic length measuring instruments in the considered range of length measurement has been solved using innovative solutions and methods. The basic principles of operation and the block diagram of the absolute rangefinder based on femtosecond laser are presented. The traceability of the absolute rangefinder based on femtosecond laser to the standard of time and frequency is provided by the phase locked loop system. The results of the absolute rangefinder based on femtosecond laser tests are presented: the error in terms of standard deviation is 13 µm, when reproducing the unit of length up to 311 m in laboratory conditions, and 10 µm at a length of 572 m in field conditions. The power reserve for the received signal and the signal­to­noise ratio of at least 15 make it possible to increase the reproduction range of the unit length. The predicted components of the non­excluded systematic error are presented. The results of the absolute rangefinder based on femtosecond laser tests correspond to the stated goal of the study, namely to increase the accuracy of reproduction of the unit of length in the range from 2.5 m to 500 m. Practical significance. The results of the study will allow to solve the problems of scientific and applied nature in the interests of improving the reference base in the predicted area of measuring lengths up to 1000 m.

 

Acknowledgment: the authors express their gratitude for the invaluable contribution to the development and manufacture of the device under study to the staff of the laboratory for the development of standards of length in the range up to 60 m, namely V.N. Buzykin, A.N. Funde, V.E. Shcherbakov, and the staff of the mechanical assembly department.

Keywords:

femtosecond laser, pulse correlation, interferometer, laser absolute rangefinder, length measurement

OCIS codes: 000.2190, 120.3940, 120.3930, 120.3180, 140.3460, 140.7090

References:

1. Gu Y., Wang L., Xiang F., Ouyang W., Jiang L. Experimental comparison of outdoor baseline measurements by different methods // E3S Web of Conferences. 2019.V. 131. P. 01057. https://doi.org/10.1051/e3sconf/201913101057
2. Daliga K., Kurałowicz Z. Comparison of different measurement techniques as methodology for surveying and monitoring stainless steel chimneys // Geosciences. 2019. V. 9(10). P. 429. https://doi.org/10.3390/geosciences9100429
3. Szczutko T. Technology of precision callibration of electro-optical rangefinders using laboratory methods and field test baseline // Geomatics and environmental engineering. 2014. V. 8. № 4. P. 67–79. https:// doi.org/10.7494/geom.2014.8.4.67
4. Kozachenkov S.A. The prospect of creating a reference linear field basis for the metrological support of length measurement // Metrology of time and space. 2021. P. 135–137.
5. Pollinger F., Meiners-Hagen K., Wedde M., Abou-Zeid A. Diode-laser-based high-precision absolute distance interferometer of 20 m range // Appl. Opt. 2009. V. 48. P. 6188–6194. https:// doi.org/ 10.1364/AO.48.006188
6. Copeland Davis T.W. Сan the KERN ME5000 mekometer replace invar measurements. Results of test measurements with three machines // Stanford Linear Accelerator Center Stanford University. Stanford, California. 1992. P. 171–183.
7. Pollinger F., Meyer T., Beyer J., Doloca N., Schellin W., Niemeier W., Jokela J., Hakli P., Abou-Zeid A., Meiners-Hagen K. The upgraded PTB 600 m baseline: a high-accuracy reference for the calibration and the development of long distance measurement devices // Meas. Sci. Technol. 2012. № 23. P. 094018. 11 p. https:// doi.org/10.1088/0957-0233/23/9/094018
8. Meiners-Hagen K., Meyer T., Mildner J, Pollinger F. SI-traceable absolute distance measurement over morethan 800 meters with sub-nanometer interferometry by two-color inline refractivity compensation // Appl. Phys. Lett. 2017. № 111. P. 191104. https://doi.org/10.1063/1.5000569
9. Meiners-Hagen K., Pollinger F., Prellinger G., Rost K., Wendt K., Pöschel W., Dontsov D., Schott W., Mandryka V. Refractivity compensated tracking interferometer for precision engineering // 58th ILMENAU SCIENTIFIC COLLOQUIUM. Ilmenau, Germany. Technische Universität Ilmenau. 08 – 12 September 2014. P. 1–11
10. Doloca N.R., Meiners-Hagen K., Wedde M., Pollinger F., Abou-Zeid A. Absolute distance measurement system using a femtosecond laser as a modulator // Meas. Sci. Technol. 2010. № 21. P. 115302. 7 p. https://doi.org/10.1088/0957-0233/21/11/115302
11. Ye J. Absolute measurement of a long, arbitrary distance to less than an optical fringe // Opt. Lett. 2004. № 29. P. 1153–1155. https://doi.org/10.1364/ol.29.001153
12. Salvade Y., Schuhler N., Leveque S., Le Floch S. Highaccuracy absolute distance measurement using frequency comb referenced multiwavelength source // Appl. Opt. 2008. № 47. P. 2715–2720. https://doi.org/10.1364/AO.47.002715
13. Hyun S., Kim Y.J., Kim Y., Jin J., Kim W. Absolute length measurement with the frequency comb of a femtosecond laser // Meas. Sci. Technol. 2009. № 20. P. 095302. https://doi.org/10.1088/0957-0233/20/9/095302
14. Balling P., Křen P., Mašika P., Berg S.A. Femtosecond frequency comb based distance measurement in air // OPTICS EXPRESS. 25 May 2009. V. 17. № 11. P. 9300–9313. https://doi.org/10.1364/oe.17.009300
15. Cao H., Song Y., Hu M., Wang C. Singular spectrum analysis for extracting low amplitude vibrations in femtosecond laser Time-of-Flight distance measurements // IEEE Photonics Journal. April 2021. V. 13. № 2. P. 1–10 https://doi.org/10.1109/JPHOT.2021.3057894
16. Hussein H., Terra O., Hussein H., Medhat M. Using femtosecond laser pulses for electronic distance meter calibration // Appl. Opt. 2020. Jul 20. № 59(21). P. 6417–6423. https://doi.org/10.1364/AO.393852
17. Coddington I., Swann W.C., Nenadovic L., Newbury N.R. Rapid and precise absolute distance measurements at long range // Nature Photonics. 2009. № 3. P. 351–356. https://doi.org/10.1038/nphoton.2009.94
18. Xiao-Sheng Z., Wang-Min Y., Ming-Hao H., Zai-Hua Y., Guan-Hao Wu. Large-scale absolute distance measurement using inter-mode beat of a femtosecond laser // Acta Phys. Sin. 2016. V. 65(8). P. 080602. https://doi.org/10.7498/aps.65.080602
19. Sokolov D.A., Oleinik-Dzyadik O.M., Silvestrov I.S. Reference measuring complex of length within the range up to 60 m from the State Primary Special Standard of a Unit of Length // Proceedings of the Institute of Applied Astronomy of the Russian Academy of Sciences. 2020. № 52. С. 63–67. https://doi.org/10.32876/ApplAstron.52.63–67
20. Kryukov P.G. Lasers of ultrashort pulses and their application: Study guide. Dolgoprudny: Intellect, 2012. 248 p.
21. Herman I., Wilhelm B. Lasers of ultrashort light pulses. M.: Mir, 1986. 368 p.
22. Bonsch G., Potulski E. Measurement of the refractive index of air and comparison with modified Edlen’s formulae // Metrologia. 1998. № 35. P. 133–9. https://doi.org/10.1088/0026-1394/35/2/8
23. Ciddor P.E. Refractive index of air: new equations for the visible and near infrared // Appl. Opt. 1996. № 35. P. 1566–1573. https://doi.org/10.1364/AO.35.001566
24. Kozachenkov S.A. The results of the study of a promising metrological complex of length measurement in conditions of intermediate precision // Instrumentation–2022: Proceedings of the 15th International Scientific and Technical Conference. November 16–18, 2022. Minsk, Republic of Belarus. BNTU.
P. 162–164.