ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-06-03-14

УДК: 681.787

Phase noises research results of the laser interferometer for the SOIGA gravitational wave detector project

For Russian citation (Opticheskii Zhurnal):

Донченко С.С., Давлатов Р.А., Лавров Е.А., Соколов Д.А., Скакун И.О., Гунин П.М. Результаты исследования фазовых шумов лазерного интерферометра для проекта космического детектора гравитационных волн SOIGA // Оптический журнал. 2023. Т. 90. № 6. С. 3–14. http://doi.org/10.17586/1023-5086-2023-90-06-03-14

 

Donchenko S.S., Davlatov R.A., Lavrov E.A., Sokolov D.A., Skakun I.O., Gunin P.M. Phase noises research results of the laser interferometer for the SOIGA gravitational wave detector project [In Russian] // Opticheskii Zhurnal. 2023. V. 90. № 6. P. 3–14. http://doi.org/10.17586/1023-5086-2023-90-06-03-14

For citation (Journal of Optical Technology):

Sergey Donchenko, Ruslan Davlatov, Evgeniy Lavrov, Denis Sokolov, Ivan Skakun, and Pavel Gunin, "Analysis of phase noises in the laser interferometer for the SOIGA gravitational wave detector project," Journal of Optical Technology. 90(6), 289-295 (2023)

Abstract:

Subject of study. Sensitivity of the on­board interferometer layout for seminumerical modelling in SOIGA spaceborne gravitational wave detector project on GLONASS orbits. Aim of study. To evaluate and investigate sources of noise in the proposed implementation of a laser heterodyne interferometer which measures relative displacements of sample masses in the space gravitational wave antenna project. Method. Numerical modelling and experimental studies of the influence of layout components on measurement sensitivity of linear relative movement. Main results. The design of the SOIGA space gravitational wave antenna with different spacecrafts configurations is described. For intersatellite interferometric measurements, the transponder principle is proposed, where each spacecraft has a receiver and a repeater of laser radiation, which propagates in opposite directions. The principles of constructing an airborne heterodyne interferometer are described. A schematic layout of a ground layout for testing the basic technical solutions is proposed. Results of estimation of nonlinear optical noise for ambiguous optical paths of the interferometer, instability of the laser module frequency, temperature fluctuations, etc. are given in the paper. Studies of radio­frequency signals fed to acousto­optical modulators showed the absence of "ghost" harmonics at the heterodyne frequency; the optimum operating mode of the RF amplifier, in which higher harmonics do not contribute to measurement uncertainty, was also determined. The greatest contribution to the interferometer layout noise was made by temperature fluctuations. The total calculated noise budget does not exceed 20 pm in frequency range from 2 to 10 Hz. Suggestions for upgrading the layout to reduce noise to the required level (<30 pm) over the entire target frequency range from 100 mHz to 10 Hz are formulated. Practical significance. The results obtained in the work can be used in the development of the first Russian space gravitational­wave antenna.

 

Acknowledgment: the research was carried out with the financial support of the RFBR in the framework of the scientific project № 19­29­11022\21.

Keywords:

inter-satellite laser interferometer, heterodyne interferometer, gravitational wave detection, interferometer noises, GLONASS

OCIS codes: 230.0230, 120.3180, 040.2840

References:

1. Abbott B. P. (LIGO Scientific Collaboration and Virgo Collaboration) et al. Observation of gravitational waves from a binary black hole merger // Physical Review Letters. 2016. V. 116. № 6. P. 061102:1-16. https://doi.org/10.1103/PhysRevLett.116.061102
2. Hammesfahr A. LISA mission study overview // Classical and Quantum Gravity. 2001. V. 18. № 10. P. 4045–4051. https://doi.org/10.1088/0264-9381/22/10/001
3. Conklin J.W., Buchman S., Aguero V. and etc. LAGRANGE: LAser GRavitational-wave ANtenna at GEo-lunar L3, L4, L5. 2011. https://arxiv.org/abs/1111.5264.
4. Kawamura S., Nakamura Т., Ando М. et al. The Japanese space gravitational wave antenna DECIGO // Classical and Quantum Gravity. 2006. V. 23. № 8.
P. S125. https://doi.org/10.1088/0264-9381/23/8/S17

5. Pustovoit V.I., Donchenko S.I., Denisenko O.V., Fateev V.F. The concept of creating a space laser gravitational antenna in the geocentric orbit GLONASS "SOIGA" // Almanac of modern metrology. 2020. № 1 (21). P. 27–49
6. Donchenko S.S., Fateev V.F., Davlatov R.A., Kharlamov P.G., Karaush E.A., Gostev Yu.V., Sokolov D.A., Lavrov E.A. Features of a high-precision space laser gravitational wave antenna based on satellites moving in GLONASS orbits // Almanac of modern metrology. 2020. № 3 (23). P. 53–96.

7. Sheard B., Heinzel G., Danzmann K. et al. Intersatellite laser ranging instrument for the GRACE follow-on mission // Journal of Geodesy. 2012. V. 86. P. 1083–1095. https://doi.org/10.1007/s00190-012-0566-3
8. Wanner G. Space-based gravitational wave detection and how LISA Pathfinder successfully paved the way // Nature Physics. 2019. 15. P. 200–202. https://doi.org/10.1038/s41567-019-0462-3
9. Zhang Y., Hines A.S., Valdes G., Guzman F. Investigation and mitigation of noise contributions in a compact heterodyne interferometer // Sensors. 2021. V. 21. № 17. P 5788:1–18. https://doi.org/10.3390/s21175788
10. Wu C.M., Deslattes R. Analytical modeling of the periodic nonlinearity in heterodyne interferometry // Applied Optics. 1998. V. 37. № 28. P. 6696–6700. https://doi.org/10.1364/AO.37.006696
11. Joo K.N., Ellis J.D., Spronck J.W., van Kan P.J., Schmidt R.H. Simple heterodyne laser interferometer with subnanometer periodic errors // Optics Letters. 2009. V. 34. № 3. P. 386–388. https://doi.org/10.1364/ol.34.000386
12. Wand V., Bogenstahl J., Braxmaier C., Danzmann K., Garcia A., Guzmán F., Heinzel G., Hough J., Jennrich O., Killow C. Noise sources in the LTP heterodyne interferometer // Classical and Quantum Gravity. 2006. V. 23. P. S159. https://doi.org/10.1088/0264-9381/23/8/S21
13. Heinzel G., Wand V., Garcia A., Guzman F., Steier F., Killow C., Robertson D.L., Ward H. Investigation of noise sources in the LTP Interferometer S2-AEI-TN-3028.2008. http://hdl.handle.net/11858/00-001M-0000-0013-4724-5 (accessed on 7 April 2021)
14. Salvadé Y., Dändliker R. Limitations of interferometry due to the flicker noise of laser diodes // Journal of the Optical Society of America A. 2000. V. 17. P. 927–932. https://doi.org/10.1364/JOSAA.17.000927
15. Drever R.W.P., Hall J.L., Kowalski F.V., Hough J., Ford G.M., Munley A.J., Ward H. Laser phase and frequency stabilization using an optical resonator // Applied Physics B. 1983. V. 31. P. 97–105. https://doi.org/10.1007/BF00702605
16. Supplee J.M., Whittaker E.A., Lenth W. Theoretical description of frequency modulation and wavelength modulation spectroscopy // Appl. Opt. 1994. V. 33. P. 6294–6302.
17. Numata K., Yu A.W., Jiao H., Merritt S.A., Micalizzi F., Fahey M.E., Camp J.B., Krainak M.A. Laser system development for the LISA (Laser Interferometer Space Antenna) mission // In Solid State Lasers XXVIII: Technology and Devices // Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. 2019. V. 10896. P. 108961H. https://doi.org/10.1117/12.2508181

18. Gibert F., Nofrarias M., Karnesis N. et al. Thermoelastic induced phase noise in the LISA Pathfinder spacecraft // Classical and Quantum Gravity. 2015.
V. 32. № 4. P. 045014. https://doi.org/10.1088/0264-9381/32/4/045014