ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-06-61-69

УДК: 530.145, 535.12, 681.7, 53.082.5

Routing the subcarrier wave quantum key distribution through metropolitan optical transport network

For Russian citation (Opticheskii Zhurnal):

Тарабрина А.Д., Воронцова И.О., Кынев С.М., Киселев Ф.Д., Егоров В.И. Маршрутизация квантового распределения ключа на боковых частотах в городской оптической транспортной сети // Оптический журнал. 2023. Т. 90. № 6. С. 61–69. http://doi.org/10.17586/1023-5086-2023-90-06-61-69

 

Tarabrina A.D., Vorontsova I.O., Kynev S.M., Kiselev F.D., Egorov V.I. Routing the subcarrier wave quantum key distribution through metropolitan optical transport network [In Russian] // Opticheskiĭ Zhurnal. 2023. V. 90. № 6. P. 61–69. http://doi.org/10.17586/1023-5086-2023-90-06-61-69

For citation (Journal of Optical Technology):

Angelina Tarabrina, Irina Vorontsova, Sergey Kynev, Fedor Kiselev, and Vladimir Egorov, "Routing subcarrier wave quantum key distribution through a metropolitan optical transport network," Journal of Optical Technology. 90(6), 324-328 (2023)

Abstract:

Subject of study. This paper investigates the method of finding a sequence of nodes in a metropolitan optical transport network, connecting the sender and the receiver through a quantum channel propagating in the same optical fiber as the information channels, that maximizes secret key generation rate. Aim of the work. The purpose of this work is to route the subcarrier wave quantum key distribution in the metropolitan optical transport network so that the secret key generation rate is maximized. Method. The metropolitan optical transport network can be represented as a graph, where the vertices are the network nodes and the edges are the fiber optic lines connecting them. The weight of an edge corresponds to the secret key generation rate on the respective segment of the fiber optic line. The final key generation rate is limited by the slowest section of the path. The desired optimal route will be found by solving the graph bottleneck problem. In this paper a brute force algorithm is used. Main results. As a result of this work the optimal paths connecting two given nodes via a quantum channel for different network topologies are found. It is shown that there is a need for more efficient algorithm for a larger number of nodes. Practical significance. The findings of this study can be used in the integration of quantum communications in existing metropolitan optical transport networks.

Keywords:

quantum key distribution, wavelength division multiplexing, graph search, bottleneck problem, metropolitan optical transport networks

Acknowledgements:

This project was financially supported by JSC «RZhD».

OCIS codes: 270.5565, 270.5568

References:
1. Gisin N., Ribordy G., Tittel W., Zbinden H. Quantum cryptography // Rev. Modern Phys. 2002. V. 74. № 1. P. 145. https://doi.org/10.1103/RevModPhys.74.145
2. Townsend P.D. Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing // Electron. Lett. 1997. V. 33. № 3. P. 188–190. https://doi.org/: 10.1049/el:19970147
3. Kiselev F., Goncharov R., Veselkova N. et al. Performance of subcarrier-wave quantum key distribution in the presence of spontaneous Raman scattering noise generated by classical DWDM channels // JOSA B. 2021. V. 38. № 2. P. 595–601. https://doi.org/10.1364/JOSAB.412289
4. Kiselev F., Veselkova N., Goncharov R., Egorov V. A theoretical study of subcarrier-wave quantum key distribution system integration with an optical transport network utilizing dense wavelength division multiplexing // J. Phys. B: Atomic, Molecular and Opt. Phys. 2021. V. 54. № 13. P. 135502. https://doi.org/10.1088/1361-6455/ac076a
5. Mazurenko Y.T., Merolla J.M., Gojebure J.P. Quantum information transfer by means of frequency subcarrier. Application to quantum cryptography //  Optics and Spectroscopy. 1999. V. 86. № 2. P. 181–183.

6. Aleksic S., Hipp F., Winkler D., Poppe A., Schrenk B., Franzl G. Perspectives and limitations of QKD integration in metropolitan area networks // Optics Express. 2015. V. 23. № 8. P. 10359–10373. https://doi.org/10.1364/OE.23.010359
7. Poppe A., Schrenk B., Hipp F. et al. Integration of quantum key distribution in metropolitan area networks // Quantum Information and Measurement. Optica Publishing Group. 2014. P. QW4A.6. https://doi.org/10.1364/QIM.2014.QW4A.6
8. Ciurana A., Martinez-Mateo J., Peev M. et al. Quantum metropolitan optical network based on wavelength division multiplexing // Optics express. 2014.
V. 22. № 2. P. 1576–1593. https://doi.org/10.1364/OE.22.001576
9. Niu J., Sun Y., Zhang Y., Ji Y. Noise-suppressing channel allocation in dynamic DWDM-QKD networks using LightGBM // Optics Express. 2019. V. 27. № 22. P. 31741–31756. https://doi.org/10.1364/OE.27.031741
10. Rabbie J., Chakraborty K., Avis G., Wehner S. Designing quantum networks using preexisting infrastructure // Quantum Information. 2022. V. 8. № 1. P. 5. https://doi.org/10.1038/s41534-021-00501-3
11. Tayduganov A., Rodimin V., Kiktenko E.O. et al. Optimizing the deployment of quantum key distribution switch-based networks // Optics Express. 2021. V. 29. № 16. P. 24884–24898. https://doi.org/10.1364/OE.427804
12. Vorontsova I., Goncharov R., Tarabrina A., Kiselev F., Egorov V. Theoretical analysis of quantum key distribution systems when integrated with a DWDM optical transport network channels // JOSA B. 2023. V. 40. № 1. P. 63–71. https://doi.org/10.1364/JOSAB.469933
13. Miroshnichenko G., Kozubov A., Gaidash A. et al. Security of subcarrier wave quantum key distribution against the collective beam-splitting attack // Optics Express. 2018. V. 26. № 9. P. 11292–11308. https://doi.org/10.1364/OE.26.011292
14. Lin R., Chen J. Minimizing spontaneous Raman scattering noise for quantum key distribution in WDM networks // 2021 Optical Fiber Communications Conference and Exhibition (OFC). San Francisco, CA, USA. June 6–10. 2021. P. 1–3.
15. Cai C., Sun Y., Ji Y. Intercore spontaneous Raman scattering impact on quantum key distribution in multicore fiber // New J. Phys. 2020. V. 22. № 8. P. 083020. https://doi.org/10.1088/1367-2630/aba023

16. Bahrani S., Razavi M., Salehi J.A. Wavelength assignment in hybrid quantum-classical networks // Scientific Reports. 2018. V. 8. № 1. P. 1–13. https://doi.org/10.1038/s41598-018-21418-6
17. Mlejnek M., Kaliteevskiy N., Nolan D. Reducing spontaneous Raman scattering noise in high quantum bit rate QKD systems over optical fiber // arXiv preprint. 2017. arXiv:1712.05891. https://doi.org/10.48550/arXiv.1712.05891
18. Eraerds P., Walenta N., Legré M. et al. Quantum key distribution and 1 Gbps data encryption over a single fibre // New J. Phys. 2010. V. 12. № 6. P. 063027. https://doi.org/10.1088/1367-2630/12/6/063027
19. Boyd R.W. Nonlinear optics. 4th ed. San Diego, CA: Academic Press, 2020. 634 p.
20. Lin Q., Yaman F., Agrawal G.P. Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization // Phys. Rev. A — Atomic, Molecular, and Optical Phys. 2007. V. 75. № 2. P. 023803. https://doi.org/10.1103/PhysRevA.75.023803
21. Hill A., Payne D. Linear crosstalk in wavelength-division-multiplexed optical-fiber transmission systems // J. Lightwave Technol. 1985. V. 3. № 3. P. 643–651. https://doi.org/10.1109/JLT.1985.1074232