DOI: 10.17586/1023-5086-2023-90-07-26-37
УДК: 629.58, 681.783.332.3
Range-gated active-imaging system for an underwater robotic complex
Full text on elibrary.ru
Publication in Journal of Optical Technology
Костылёв Н.М., Колючкин В.Я., Шустова А.А. Активно-импульсная система технического зрения для подводного робототехнического комплекса // Оптический журнал. 2023. Т. 90. № 7. С. 26–37. http://doi.org/10.17586/1023-5086-2023-90-07-26-37
Kostylev N.M., Kolyuchkin V.Ya., Shustova A.A. Range-gated active-imaging system for an underwater robotic complex [in Russian] // Opticheskii Zhurnal. 2023. V. 90. № 7. P. 26–37. http://doi.org/10.17586/1023-5086-2023-90-07-26-37
Nikita M. Kostylev, Vasiliy Ya. Kolyuchkin, and Anastasiya A. Shustova, "Range-gated active-imaging system for underwater robots," Journal of Optical Technology. 90(7), 369-375 (2023). https://doi.org/10.1364/JOT.90.000369
Subject of study. Technical vision systems for underwater robotic complexes. The aim of the study is to develop the principles of operation and determine the technical requirements for the components of a vision system designed to register 3D images of underwater objects in a wide range of distance. Method. To reduce the effect of backscattering, a range-gating method was implemented by using a pulsed laser in the illumination channel and an image converter in the receiving channel. To register 3D images of objects, a triangulation method with structured illumination in the form of laser stripes was used. Main results. The principle of a range-gated active-imaging system operation, designed to register 3D images of underwater objects, has been developed. A technique for light-energy calculation of such systems has been developed. Experimental studies carried out in laboratory conditions confirmed the operability of a prototype model of an active-imaging system created on the basis of the proposed principles. Practical significance. The proposed technical solutions in the development of a vision system make it possible to increase the detection range of objects in underwater conditions and thereby increase the efficiency of the underwater robotic systems functioning.
range-gated active-imaging system, underwater vision system, range-gating, registration of 3D images, image intensifier tube, acousto-optic deflector
OCIS codes: 010.4450, 010.4458, 150.0155, 150.6910
References:1. Petillot Y.R., Antonelli G., Casalino G., et al. Underwater robots: From remotely operated vehicles to intervention-autonomous underwater vehicles // IEEE Robotics & Automation Magazine. 2019. V. 26. № 2. P. 94–101. https://doi.org/10.1109/MRA.2019.2908063
2. Li Y., Zhang X., Shen Z. YOLO-submarine cable: An improved YOLO-V3 network for object detection on submarine cable images // J. Marine Sci. and Eng.
2022. V. 10. № 8. P. 19. https://doi.org/10.3390/jmse10081143
3. Zhang H., Zhang S., Wang Ya., et al. Subsea pipeline leak inspection by autonomous underwater vehicle // Appl. Ocean Res. 2021. V. 107. https://doi.org/10.1016/j.apor.2020.102321
4. Dumke I., Nornes S.M., Purser A., et al. First hyperspectral imaging survey of the deep seafloor: Highresolution mapping of manganese nodules // Remote
Sensing of Environment. 2018. V. 209. P. 19–30. https://doi.org/10.1016/j.rse.2018.02.024
5. Eldred R., Lussier J., and Pollman A. Design and testing of a spherical autonomous underwater vehicle for shipwreck interior exploration // J. Marine Sci. and Eng. 2021. V. 9. № 3. P. 27. https://doi.org/10.3390/jmse9030320
6. Bocharov L. Uninhabited underwater vehicles: State and general development trends [in Russian] // Electronics: Science, Technology, Business. 2009. № 7. P. 62–69.
7. Bruno, F., Bianco G., Muzzupappa M., et al. Experimentation of structured light and stereo vision for underwater 3D reconstruction // ISPRS J. Photogrammetry and Remote Sensing. 2011. V. 66. № 4. P. 508–518. https://doi.org/10.1016/j.isprsjprs.2011.02.009
8. Veltishchev V.V., Aladysheva E.I. Review and outlook of hybrid underwater robotic systems [in Russian] // Vestnik UGATU. 2022. V. 26. № 1. P. 4–12.
9. Levin I.M. Promising lines of studying the ocean by optical remote sensing metods [in Russian] // Fundamental and Appl. Hydrophys. 2008. V. 1. № 1. P. 14–47.
10. Zhou J., Yang T., and Zhang W. Underwater vision enhancement technologies: A comprehensive review, challenges, and recent trends // Appl. Intelligence. 2023. V. 53. № 3. P. 3594–3621. https://doi.org/10.1007/s10489-022-03767-y
11. O’Connor Sh., Mullen L.J., Cochenour B. Underwater modulated pulse laser imaging system // Opt. Eng. 2014. V. 53. № 5. P. 51403–51403. https://doi.org/10.1117/1.OE.53.5.051403
12. Buzoverya V.V., Bulkin Yu.N., Velikanov S.D., et al. A method of seeing underwater objects and a device for its implementation // RF Patent № 2397510. Bull. 2010. № 23.
13. Li H., Wang X., Tingzhu Bai, et al. Speckle noise suppression of range gated underwater imaging system // in Appl. of Digital Image Proc. XXXII. 2009. V. 7443. P. 641–648. https://doi.org/10.1117/12.831994
14. Kirpichenko Yu.R., Kuryachiy M.I., Pustynsky I.N. Active-pulse television system // RF Patent № 2406100. Bull. 2010. № 34.
15. Kostylev N.M., Kolyuchkin V.Ya., Stepanov R.O. A mathematical model of laser radiation propagation in seawater // Opt. and Spectrosc. 2019. V. 127. № 4. P. 612–617. https://doi.org/10.1134/S0030400X1910014X
16. Lee Zh., Arnone R., Boyce D., et al. Global water clarity: Continuing a century-long monitoring // Eos. 2018. № 99. P. 11.
17. Reibel Y., Jung M., Bouhifd M., et al. CCD or CMOS camera noise characterization // The Europ. Phys. J. — Appl. Phys. 2003. V. 21. № 1. P. 75–80.
18. Ishii I., Yamamoto K., Doi K., et al. High-speed 3D image acquisition using coded structured light projection // 2007 IEEE/RSJ Internat. Conf. Intelligent Robots and Systems San Diego, CA, USA. 2007. P. 925–930. https://doi.org/10.1109/IROS.2007.4399180