ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-07-86-93

УДК: 681.787.6

Development the method of direct phase demodulation Fabry–Perot interferometer for temperature measurements using frequency scanning

For Russian citation (Opticheskii Zhurnal):

Казачкова И.Д., Плотников М.Ю., Коннов К.А., Коннов Д.А. Разработка метода прямой демодуляции фазы интерферометра Фабри–Перо для температурных измерений с использованием частотного сканирования // Оптический журнал. 2023. Т. 90. № 7. С. 86–93. http://doi.org/10.17586/1023-5086-2023-90-07-86-93

 

Kazachkova I.D., Plotnikov M.Y., Konnov K.A., Konnov D.A. Development the method of direct phase demodulation Fabry–Perot interferometer for temperature measurements using frequency scanning [in Russian] // Opticheskii Zhurnal. 2023. V. 90. № 7. P. 86–93. http://doi.org/10.17586/1023-5086-2023-90-07-86-93

For citation (Journal of Optical Technology):

Irina D. Kazachkova, Michael Y. Plotnikov, Kirill A. Konnov, and Dmitriy A. Konnov, "Development of a direct phase demodulation method for a Fabry-Pérot interferometer for temperature measurements using frequency scanning," Journal of Optical Technology. 90(7), 405-409 (2023). https://doi.org/10.1364/JOT.90.000405

Abstract:

Subject of study. The spectral characteristics of interference signal were studied using the method of direct phase demodulation for interrogator of fiber-optic sensor for high-temperature measurements. The aim of study is development of the method for measurement of absolute temperature of Fabry–Perot interferometer based on phase demodulation using frequency scanning. Method. A mathematical model of direct phase demodulation was implemented in the MATLAB environment. The developed method allows evaluating the change in the optical length of the interferometer under the influence of temperature by performing frequency modulation of the wavelength of the optical source according to the periodic sawtooth law. As a result of multipath interference in the resonator of Fabry–Perot interferometer, the photodetector registers a reflected interference response with a complex spectral composition. The current value of the phase difference in the interferometer is restored by estimation of the position of the local minima of the interference signal, and the absolute temperature of the interferometer is determined. Main results. The results of mathematical modeling of the method of direct phase demodulation for the wavelength range of the optical source 1308–1310 nm are presented. The length of the interferometer resonator was matched to the allowable range of vertical-cavity surface-emitting laser wavelength tuning to achieve the maximum phase sensitivity. The digital filter for the phase demodulation method of Fabry–Perot interferometer was selected and the potential accuracy of the temperature determination method was calculated considering the presence of noise in the measuring system. Practical significance. The method proposed in this work can be used in the interrogation system of the fiber-optic interferometric Fabry–Perot sensors, as well as for high-precision temperature monitoring systems above 300 °C.

Keywords:

fiber optic sensor, Fabry–Perot interferometer, phase demodulation, interrogator, temperature measurement

OCIS codes: 120.5050, 120.2230, 060.2370,070.6020

References:

1. Hirsch M., Majchrowicz D., Wierzba P., et al. Lowcoherence interferometric fiber-optic sensors with potential applications as biosensors // Sensors. 2017.
V. 17. P. 261. https://doi.org/10.3390/s17020261
2. Bao Y., Huang Y., Hoehler M.S., et al. Review of fiber optic sensors for structural fire engineering // Sensors (Basel). 2019. V. 19. № 4. P. 877. http://dx.doi.org/10.3390/s19040877
3. Jia P., Liang H., Fang G., et al. Batch-producible MEMS fiber-optic Fabry–Perot pressure sensor for high-temperature application // Appl. Opt. 2018. V. 57
№ 23. P. 6687–6692. https://doi.org/10.1364/AO.57.006687
4. Liu Q., Peng W. Fast interrogation of dynamic lowfinesse Fabry–Perot interferometers: A review // Microwave and Opt. Technol. Lett. 2021. V. 63. № 9.
P. 2279–2291. https://doi.org/10.1002/mop.32922

5. Wang Q., Ma Z. Feedback-stabilized interrogation technique for optical Fabry–Perot acoustic sensor using a tunable fiber laser // Opt. Laser Technol. 2013. V. 51. P. 43–46. http://dx.doi.org/10.1109/JSEN.2011.2140104
6. Mao X., Zhou X., Yu Q. Stabilizing operation point technique based on the tunable distributed feedback laser for interferometric sensors // Opt. Commun. 2016. V. 361. P. 17–20. https://doi.org/10.1016/j.optcom.2015.10.022.
7. Ma J., Zhao M., Huang X., et al. Low cost, high performance white-light fiber-optic hydrophone system with a trackable working point // Opt. Exp. 2016. V. 24. № 17. P. 19008–19019. https://doi.org/10.1364/OE.24.019008
8. Mao X., Yuan S., Zheng P., et al. Stabilized fiber-optic Fabry–Perot acoustic sensor based on improved wavelength tuning technique // J. Lightwave Technol. 2017. V. 35 № 11. P. 2311–2314.
9. Jia J., Jiang Y., Zhang L., et al. Dual-wavelength DC compensation technique for the demodulation of EFPI fiber sensors // IEEE Photonics Technol. Lett. 2018. V. 30 № 15. P. 1380–1383. https://doi.org/10.1109/LPT.2018.2848934
10. Cheng J., Lu D-f., Gao R., et al. Fiber optic microphone with large dynamic range based on bi-fiber Fabry–Perot cavity // Fiber Opt. Sensing and Opt. Commun. 2017. https://doi.org/10.1117/12.2283009
11. Huang Y., Wang S., Jiang J., et al. Orthogonal phase demodulation of optical fiber Fabry–Perot interferometer based on Birefringent crystals and polarization technology // IEEE Photonics J. 2020. V. 12. № 3. P. 1–9. https://doi.org/10.1109/JPHOT.2020.2977952
12. Jiang J., Zhang T., Wang S., et al. Noncontact ultrasonic detection in low-pressure carbon dioxide medium using high sensitivity fiber-optic Fabry–Perot sensor system // J. Lightwave Technol. 2017. V. 35. № 23. P. 5079–5085. https://doi.org/10.1109/JLT.2017.2765693
13. Liao H., Lu P., Liu L., et al. Phase demodulation of short-cavity Fabry–Perot interferometric acoustic sensors with two wavelengths // IEEE Photonics J.
2017. V. 9. № 2. P. 1–9. https://doi.org/10.1109/JPHOT.2017.2689771
14. Jia P.G., Wang D.H. Self-calibrated non-contact fiberoptic Fabry–Perot interferometric vibration displacement sensor system using laser emission frequency modulated phase generated carrier demodulation scheme // Meas. Sci. Technol. 2012. V. 23. № 11. P. 115201. https://doi.org/10.1088/0957-0233/23/11/115201
15. Volkov A.V., Plotnikov M.Y., Mekhrengin M.V., et al. Phase modulation depth evaluation and correction technique for the PGC demodulation scheme in fiberoptic interferometric sensors // IEEE Sens. J. 2017. V. 17. № 13. P. 4143–4150. https://doi.org/10.1109/JSEN.2017.2704287
16. Zhou X., Yu Q. Wide-range displacement sensor based on fiber-optic Fabry–Perot interferometer for subnanometer measurement // IEEE Sens. J. 2011. V. 11. № 7. P. 1602–1606. https://doi.org/10.1109/JSEN.2010.2103307
17. Moro E.A., Todd M.D., Puckett A.D. Understanding the effects of Doppler phenomena in white light Fabry–Perot interferometers for simultaneous position and velocity measurement // Appl. Opt. 2012. V. 51. № 27. P. 6518–6527. https://doi.org/10.1364/AO.51.006518
18. Yu Z., Wang A. Fast white light interferometry demodulation algorithm for low-finesse Fabry–Pérot sensors // IEEE Photonics Technol. Lett. 2015. V. 27.
№ 8. P. 817–820. https://doi.org/10.1109/LPT.2015.2391912
19. Lee C.E., Atkins R.A., Taylor H.F. Performance of a fiber-optic temperature sensor from −200 to 1050 °C // Opt. Lett. 1988. V. 13. № 11. P. 1038–1040. https://doi.org/10.1364/OL.13.001038
20. Liu Y., Zhang T., Wang Y., et al. Simultaneous measurement of gas pressure and temperature with integrated optical fiber FPI sensor based on in-fiber micro-cavity and fiber-tip // Opt. Fiber Technol. 2018. V. 46. P. 77–82. https://doi.org/10.1016/j.yofte.2018.09.021
21. Zhang C., Cui G., Miao C., et al. A Fabry–Perot temperature sensor sealed with thermo-sensitive polymer // Results in Optics. 2021. V. 5. P. 100163. https://doi.org/10.1016/j.rio.2021.100163