DOI: 10.17586/1023-5086-2023-90-07-94-100
УДК: 535.377
Efficiency of thermoluminescent response of laser-structured polycrystalline and monocrystalline α-Al2O3
Full text on elibrary.ru
Publication in Journal of Optical Technology
Жук К.В., Смирнов С.В. Эффективность термолюминесцентного отклика лазерно-структурированного поликристаллического и монокристаллического α-Al2O3 // Оптический журнал. 2023. Т. 90. № 7. С. 94–100. http://doi.org/10.17586/1023-5086-2023-90-07-94-100
Zhuk K.V., Smirnov S.V. Efficiency of thermoluminescent response of laserstructured polycrystalline and monocrystalline α-Al2O3 [in Russian] // Opticheskii Zhurnal. 2023. V. 90. № 7. P. 94–100. http://doi.org/10.17586/1023-5086-2023-90-07-94-100
Klavdiya V. Zhuk and Serafim V. Smirnov, "Efficiency of the thermoluminescent response in laser-structured monocrystalline and polycrystalline α-Al2O3," Journal of Optical Technology. 90(7), 410-413 (2023). https://doi.org/10.1364/JOT.90.000410
Subject of study. Thermoluminescence of sapphire and alumina ceramic samples nanostructured by CO2 laser radiation. The aim of the study is the possibility investigation of increasing the thermoluminescent response by modifying the surface of polycrystalline and single-crystal aluminum oxide by laser radiation. Method. Laser treatment of the studied samples surface was carried out using a CERTON 3020 ULTRA installation with continuous CO2 laser radiation with a wavelength of 10.6 μm at different scanning speeds. Ultraviolet irradiation of the samples was carried out by low-pressure mercury lamp radiation with the separation of the spectral band 230–240 nm. To determine the results of laser treatment of the samples surface, the methods of optical and
infrared Fourier spectroscopy, photo- and thermoluminescence, X-ray phase analysis, and scanning electron spectroscopy were used. Main results. In the course of laser treatment in the studied samples, generation of F-centers and their derivatives an increased concentration was revealed. The effect of laser processing modes on the thermoluminescent response is established. Practical significance. It is shown that laser treatment of the surface of dosimetric materials with CO2 laser radiation leads to an increase in the thermoluminescent response of polycrystalline and single-crystal alumina, which will make it possible to create dosimeters with a lower detected dose threshold. The developed method can be used in the production of ТЛД-500к type dosimeters.
thermoluminescent dosimeter, laser processing, optical spectroscopy, photo- and thermoluminescence
Acknowledgements:The work was carried out by the staff of the Research Laboratory of Integrated Optics and Radio Photonics with the financial support of the Ministry of Science and Higher Education of the Russian Federation under agreement № 075-03-2020-237/1 dated March 5, 2020 (internal project number FEWM-2020-0040), as well as within the framework of the grant of the Russian Science Foundation № 21-72-00124.
OCIS codes: 140.3390, 250.5230, 300.6360, 250.5230
References:1. Kortov V.S., Milman I.I., Nikiforov S.V. Solid-state dosimetry [in Russian] // Proc. of the Tomsk Polytechnic University. 2000. V. 303. № 2. P. 35–45. http://earchive.tpu.ru/handle/11683/2971
2. Klimanov V.A., Kramer-Ageev E.A., Smirnov V.V. Radiation dosimetry [in Russian] / ed. by Klimanova V.A. M.: "NIIAU MIFI" Publ., 2014. 648 p.
3. Solovev S.V., Milman I.I., Surdo A.I. Thermal- and photo-induced transformations of luminescence centers in α-Al2O3 anion-defective crystals // Phys. of the Solid State. 2012. V. 54. P. 726–734. http://doi.org/10.1134/S1063783412040270
4. Ramazanova G.R., Ananchenko D.V., Nikiforov S.V., et al. Luminescent properties of sapphire single crystals irradiated with a pulsed Fe10+ ion beam // Opt. and Spectrosc. 2021. V. 129. P. 1150–1159. http://doi.org/10.1134/S0030400X21080154
5. Perevalov T.V., Shaposhnikov A.V., Gritsenko V.A. Electronic structure of bulk and defect α- and γ-Al2O3 // Microelectron. Eng. 2009. V. 86. P. 1915–1917. https://doi.org/10.1016/j.mee.2009.03.006
6. Kortov V.S., Mil’man I.I., Nikiforov S.V., et al. Mechanism of F-center luminescence in anion-defective aluminum oxide single crystals // Phys. of the Solid State. 2003. V. 45. P. 1260–1266. http://doi.org/10.1134/1.1594239
7. Kao K., Huang V. Electron transport in solids. Oxford, N.Y.: Pergamon Press, 1981. 663 р. http://doi.org/10.1063/1.2915326
8. Zhang B., Lu S.-Z., Zhang H.-J., et al. The fluorescence and thermoluminescence characteristics of α-Al2O3:C ceramics // Chin. Phys. B. 2010. V. 19. № 10. P. 1–4. http://doi.org/10.1088/1674-1056/19/7/077805
9. Trinade N.M., Magalhaes M.G., Nunes M.C.S., et al. Thermoluminiscence of UV-irradiated α-Al2O3:C,Mg // J. Lumin. 2020. V. 223. P. 1–5. https://doi.org/10.1016/j.jlumin.2020.117195
10. Aulker N.L., Vinnikova E.A. Study of the optical characteristics of anion-defective corundum [in Russian] // Bulletin of the KemGU, Chemistry. 2008. № 2. P. 214–219.
11. Pokorny P., Ibarra A. Impurity effects on the thermoluminescence of Al2O3 // J. Appl. Phys. 1994. V. 75. № 2. P. 1088–1090. https://doi.org/10.1063/1.356490
12. Smirnov S.V., Zhuk K.V., Savruk E.V. Cathode- and thermoluminescence of laser-nanostructured α-Al2O3 ceramics [in Russian] // Appl. Phys. (publ. by the Scientific and Production Association "Orion", Moscow). 2022. № 5. P. 49–53. http://doi.org/10.51368/1996-0948-2022-5-49-53
13. Savruk E.V., Smirnov S.V. Investigation of the structure of alumina ceramics after electronic and laser processing [in Russian] // Factory Laboratory. 2011. V. 77. № 6. P. 32–35.
14. Bitiukov V.K., Petrov V.A. Absorption coefficient of aluminum oxide melt [in Russian] // Appl. Phys. (publ. by the SPA "Orion", Moscow). 2007. № 4. P. 18–34.
15. Lisachenko A.A., Glebovskii A.A. Destruction of Al2O3 under laser excitation in the absorption band of V-centers // JTF Lett. 2000. V. 26. № 7. P. 87–94. http://doi.org/10.1134/1.1262827
16. Kortov V.S., Nikiforov S.V. Features of the luminescence of nanostructured aluminum oxide [in Russian] // Nanosystems, nanomaterials, nanotechnologies. 2011. V. 9. № 1. P. 41–48.
17. Aluker N.L., Artamonov A.S., Gimadova T.I., et al. Thermoluminescent dosimeters based on aluminum oxide and nitride ceramics // Instruments and Experimental Technique. 2021. № 6. P. 860–868. http://doi.org/10.1134/S0020441221050158
18. Zvonarev S.V., Smirnov N.O. Luminescence quenching in magnesium-doped alumina ceramics // Physics of the Solid State. 2019. V. 61. № 5. P. 835–839. http://doi.org/10.1134/S1063783419050408