ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-08-111-119

УДК: 535.343.2: 535.372: 666.22

Synthesis technology of composites based on polymers and perovskite nanocrystals for application as radiation converter of a spark sensor

For Russian citation (Opticheskii Zhurnal):

Плешанов И.М., Марасанов Д.В., Зеленков Л.Е., Белорус А.О. Технология создания композитов на основе полимеров и нанокристаллов перовскитов для применений в качестве преобразователей излучения датчика искры // Оптический журнал. 2023. Т. 90. № 8. С. 111–119. http://doi.org/10.17586/1023-5086-2023-90-08-111-119

For citation (Journal of Optical Technology):
Ilya M. Pleshanov, Dmitriy V. Marasanov, Lev E. Zelenkov, and Anton O. Belorus, "Synthesis technology of composites based on polymers and perovskite nanocrystals for application as a radiation converter of a spark sensor," Journal of  Optical Technology. 90(8), 486-490 (2023).   https://doi.org/10.1364/JOT.90.000486
Abstract:

Subject of study. The paper presents a technology for obtaining nanocomposite polymer structures (films) and their application in luminescent spark sensors with a spectral radiation converter. CsPbBr3 inorganic perovskite nanocrystals introduced by encapsulation into the polymer structure of polydimethylsiloxane act as a converter of the spark radiation into the visible region of the spectrum. The aim of this work is to develop a technology for obtaining the composite structures based on polydimethylsiloxane polymer and CsPbBr3 perovskite nanocrystals to protect perovskite nanocrystals from degradation and to show the fundamental possibility of using the composite materials as radiation converters of the fiber-optic spark sensor. Method. The method of encapsulating nanocrystals in a polymer structure was used as a technique for creating the polydimethylsiloxane-CsPbBr3 composite structure. The efficiency of the optical system was calculated using numerical simulation. Main results. The luminescence, absorption and quantum yield spectra of inorganic perovskites and composite structures based on inorganic CsPbBr3 and polydimethylsiloxane perovskitesare analyzed. The degradation properties of the composite structure were studied for 10 months. The full width at half maximum characteristics for the luminescence spectra of composite structures based on CsPbBr3 and polydimethylsiloxane perovskite nanocrystals have been calculated. The modeling of optic sensor system has been carried out, the optical efficiency of using the composite structure has been calculated, and the fundamental possibility of using it for application as radiation converters of optical spark sensors has been shown. Practical significance. The studied composite materials based on CsPbBr3 and polydimethylsiloxane perovskite nanocrystals obtained by means of the developed technology can be used as radiation converters in position-sensitive fiber-optic spark sensors, as well as in various other optical and optoelectronic devices.

Keywords:

polymers, composite material, polydimethylsiloxane, perovskite nanocrystals, luminescence, spark, fiber-optic sensors, radiation converters

OCIS codes: 060.2380, 230.0230, 160.2540.

References:

1.    Sidorov A.I., Pleshanov I.M. Spark sensor // RF Patent No. 2715477. 2020 URL: https://new.fips.ru/registers-doc-view/fips_servlet?DB=RUPAT&DocNumber=2715477&TypeFile=html

2.   Sidorov, A. I., Lisenkova, A. E., Tsepich, V. P., Goryainov, V. S. Position-sensitive spark sensor with spectral conversion of radiation. // Journal of Optical Technology. 2020. V. 87. № 9. P. 562–565. https://doi.org/10.1364/JOT.87.000562

3.   Zhao J., Yang Z., Yu C., Qiu J., Song Z. Preparation of ultra-small molecule-like Ag nano-clusters in silicate glass based on ion-exchange process: energy transfer investigation from molecule-like Ag nano-clusters to Eu3+ ions // Chemical Engineering Journal. 2018. V. 341. P. 175–186. https://doi.org/10.1016/j.cej.2018.02.028

4.   Marasanov D.V., Mironov L.Yu., Sgibnev Y.M., Nikonorov N.V. Luminescence and energy transfer mechanisms in photo-thermo-refractive glasses co-doped with silver molecular clusters and Eu3+ //Physical Chemistry Chemical Physics. 2020. V. 22. № 40. P. 23342–23350. https://doi.org/10.1039/D0CP02786C

5.   Mironov L.Y., Marasanov D.V., Ulshina M.D., Sgibnev Y.M., Kolesnikov I.E., Nikonorov N.V. The role of thermally activated quenching and energy migration in luminescence of silver clusters in glasses // The Journal of Physical Chemistry C. 2022. V. 126(32). P. 13863–13869. https://doi.org/10.1021/acs.jpcc.2c04521

6.   Li L., Yang Y., Zhou D., Yang Z., Xu X., Qiu J. Investigation of the role of silver species on spectroscopic features of Sm3+-activated sodium-aluminosilicate glasses via Ag+-Na+ ion exchange // J. Appl. Phys. 2013. V. 113. P. 1–5. https://doi.org/10.1063/1.4807313

7.    Sgibnev Y., Asamoah B., Nikonorov N., Honkanen S. Tunable photoluminescence of silver molecular clusters formed in Na+-Ag+ ion-exchanged antimony-doped photo-thermo-refractive glass matrix // Journal of Luminescence. 2020. V. 226. P. 117411. https://doi.org/10.1016/j.jlumin.2020.117411

8.   Babkina A.N., Kiprushkina T.S., Shirshnev P.S., Nikonorov N.V. Luminescence thermochromism in glass with copper-containing molecular clusters // Journal of Optical Technology. 2016. V. 83(7). P. 434–437. https://doi.org/10.1364/JOT.83.000434

9.   Nikonorov N.V., Sidorov A.I. Materials and technologies of fiber optics: special optical fibers: textbook. a manual, a course of lectures. St. Petersburg: St. Petersburg State University ITMO, 2009. 130 p.

10. Krieg F., Quy K. Ong, Burian M., Rainò G., Naumenko D., Amenitsch H., Süess A., Grotevent M.J., Krumeich F., Bodnarchuk M.I., Shorubalko I., Stellacci F., Kovalenko M.V. Stable ultraconcentrated and ultradilute colloids of CsPbX3 (X = Cl, Br) nanocrystals using natural lecithin as a capping ligand // Journal of the American Chemical Society. 2019. V. 141 (50). P. 19839–19849. https://doi.org/10.1021/jacs.9b09969

11.  Belorus A.O., Pleshanov I.M., Doru-Tovt N.V. Influence of technological conditions on photoluminescent properties of halide perovskite nanocrystals // Journal of Physics: Conference Series. 2020. V. 1482. № 1. P. 012011. https://10.1088/1742-6596/1482/1/012011

12.  Zhao H., Zhou Y., Benetti D., Ma D., Rosei F. Perovskite quantum dots integrated in large-area luminescent solar concentrators // Nano energy. 2017. V. 37. P. 214–223. https://doi.org/10.1016/j.nanoen.2017.05.030

13.  Dursun I., Shen C., Parida M.R., Pan J., Sarmah S.P., Priante D., Bakr O.M. Perovskite nanocrystals as a color converter for visible light communication // Acs Photonics. 2016. V. 3(7). P. 1150–1156. https://doi.org/10.1021/acsphotonics.6b00187

14.  Yan F., Tan S.T., Li X., Demir H.V. Light generation in lead halide perovskite nanocrystals: LEDs, color converters, lasers, and other applications // Small. 2019. V. 15(47). P. 1902079. https://doi.org/10.1002/smll.201902079

15.  Ouyang Y., Li Y., Zhu P., Li Q., Gao Y., Tong J., Wang J. Photo-oxidative degradation of methylammonium lead iodide perovskite: mechanism and protection // Journal of Materials Chemistry A. 2018. V. 7(5). P. 2275–2282. https://doi.org/10.1039/C8TA12193A

16.  Zhou Y., Zhao Y. Chemical stability and instability of inorganic halide perovskites // Energy & Environmental Science. 2018. V. 12(5). P. 1495–1511. https://doi.org/10.1039/C8EE03559H

17.       Agafonova D.S., Sidorov A.I. Effect of geometrical factors on the efficiency with which an electric spark is recorded using a fiber sensor with luminescent cladding // Journal of Optical Technology. 2020. V. 87(2). P. 127–131. https://doi.org/10.1364/JOT.87.000127