ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-08-17-28

УДК: 535.37+621.371.378

Single-mode lasing in the diode-pumped passive Q-switch lasers based on neodymium doped yttrium aluminate and ytterbium-erbium glass active elements

For Russian citation (Opticheskii Zhurnal):

Богданович М.В., Григорьев А.В., Дудиков В.Н., Рябцев А.Г., Рябцев Г.И., Татура П.О., Тепляшин Л.Л., Шпак П.В., Щемелев М.А. Одномодовая генерация в диоднонакачиваемых лазерах на основе алюмината иттрия, допированного неодимом, и иттербий-эрбиевого стекла с пассивной модуляцией добротности // Оптический журнал. 2023. Т. 90. № 8. С. 17–28. http://doi.org/10.17586/1023-5086-2023-90-08-17-28

 

Bogdanovich M.V., Grigor’ev A.V., Dudikov V.N., Ryabtsev A.G., Ryabtsev  G.I., Tatura P.O., Teplyashin L.L., Shpak P.V., Shchemelev M.A. Single-mode lasing in the diode-pumped passive Q-switch lasers based on neodymium doped yttrium aluminate and ytterbium-erbium glass active elements [in Russian] // Opticheskii Zhurnal. 2023. V. 90. № 8. P. 17–28. http://doi.org/10.17586/1023-5086-2023-90-08-17-28

For citation (Journal of Optical Technology):
Maxim Bogdanovich, Alexandr Grigor’ev, Valery Dudikov, Andrew Ryabtsev, Gennadii Ryabtsev, Pavel Tatura, Leonid Teplyashin, Pavel Shpak, and Maxim Shchemelev, "Single-mode lasing in diode-pumped passive Q-switch lasers based on neodymium-doped yttrium aluminate and ytterbium-erbium glass active elements," Journal of  Optical Technology. 90(8), 428-434 (2023).  https://doi.org/10.1364/JOT.90.000428
Abstract:

Subject of study. Two types of transversally diode pumped lasers, namely Nd:YAG laser with Cr4+:YAG passive Q-switch (the lasing wavelength is 1064 nm) and Yb,Er-glass laser with Со2+:MgAl2O4 passive Q-switch (1535 nm) have been considered. Purpose of the study is experimental and theoretical investigation of the spectral selection properties of the solid-state lasers, the monopulses of which are formed by the bleaching filters. Method. The conditions for single frequency lasing in laser cavity were defined. The time intervals characterizing the evolution of the monopulses in the cavity of lasers with the bleaching filters, as well as the number of the related radiation trips within the cavities up to the moment of achievement of maximum lasing power were determined by numerical simulation. Main results. Based on these data it has been shown that the lasing regime within the cavity of the Yb,Er glass laser with the Со2+:MgAl2O4 passive Q-switch is set for a longer period of time compared to the Nd:YAG laser with Cr4+:YAG passive Q-switch. Therefore, the single-mode regime in the Yb,Er glass laser is realized without introducing an additional frequency-dependent element to the cavity. In contrast to this the single-mode regime in the Nd:YAG laser can be achieved by formation of interference-polarizing Lyot filter due to thermally-induced birefringence of the active element and polarizer only. Practical significance. The obtained results are applicable for development and creation of compact single-frequency diode-pumped lasers operating within the near infrared spectral including the eye safety region.

Keywords:

solid-state laser, Nd:YAG, Yb,Er-glass, passive Q-switch, transversal diode pump, single-mode laser radiation

Acknowledgements:

the work was carried out with the support of the State Research Institute Program “Photonics and Electronics for Innovation, task 1.4” and the BRFFI F21UZBG–025 project. The authors express their gratitude to K.I. Lantsov for his help in the work

OCIS codes: 140.3480, 140.3540, 140.3580, 140.3430

References:

1.    Kravtsov N.V., Nanii O.E. High-stability single-frequency solid-state lasers // Quantum Electronics. 1993. V. 23. № 4. P. 272–291. https://doi.org/10.1070/QE1993v023n04ABEH002992

2.   Antsiferov V.V. High power single frequency tunable solid-state lasers // Technical Physics. 1998. V. 43. № 10. P. 1203–1208.

3.   Zuev V.E., Zuev V.V. Remote optical sensing of the atmosphere. St. Petersburg: Gidrometeoizdat, 1992. 232 p.

4.   Schroder T., Lemmerz C., Reitebuch O., Wirth M., Wuhrer C., Treichel R. Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for Doppler wind lidar // Appl. Phys. B. 2007. V. 87. P. 437–444. https://doi.org/10.1007/s00340-007-2627-5

5.   Reitebuch O., Lemmerz Ch., Nagel E., Paffrath U., Durand Y., Endemann M., Fabre F., Chaloupy M. The airborne demonstrator for the direct–detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument // J. Atmospheric and Oceanic Technology. 2009. V. 26. P. 2501–2515. https://doi.org/10.1175/2009JTECHA1309.1

6.   Banakh V.A., Razenkov I.A. Aerosol lidar for study of the backscatter amplification in the atmosphere. Part II. Construction and experiment // Atmospheric and Ocean Optics. 2015. V. 28. № 2. P. 113–119.

7.    Bogdanovich M.V., Grigor’ev A.V., Lantsov K.I., Lepchenkov K.V., Ryabtsev A.G., Ryabtsev G.I., Tsitavets U.S., Shchemelev M.A. Portable diode-pumped solid-state lasers // Photonics. 2016. V. 55. № 1. P. 58–63.

8.   Bogdanovich M.V., Grigor’ev A.V., Kalinov V.S., Kostik O.E., Lantsov K.I., Ryabtsev A.G., Ryabtsev G.I., Shpak P.V., Teplyashin L.L. Single-frequency side-diode-pumped monopulse Nd:YAG laser with a ring cavity // Journal of Applied Spectroscopy. 2019. V. 86. № 1. P. 50–55. https://doi.org/10.1007/s10812-019-00779-4

9.   Batura E.O., Bogdanovich M.V., Grigor’ev A.V., Dudikov V.N., Lantsov K.I., Ryabtsev A.G., Ryabtsev G.I., Shpak P.V., Teplyashin L.L, Shchemelev M.A., Sadovskii P.I. Single-frequency transversally diode pumped Yb,Er-laser with passive Q-switching unit // Journal of Applied Spectroscopy. 2021. V. 88. № 1. P. 57–64. https:// doi.org/10.1007/s10812-021-01139-x

10. Soffer B.H. Giant pulse laser operation by a passive, reversibly bleachable absorber // J. Appl. Phys. 1964. V. 35. № 8. P. 2551. https://doi.org/10.1063/1.1702903.

11.  Sooy W.R. The natural selection of modes in a passive Q-switched laser // Appl. Phys. Letters. 1965. V. 7. № 2. P. 36–37. https://doi.org/10.1063/1.1754286

12.  Pilipovich V.A., Kovalyev A.A. Optical quantum generators with bleaching filters. Minsk: Nauka i technika, 1975. 216 p.

13.  Tarasov L.V. Physics of Laser. 2nd Ed., corrected and supplemented. M.: Kniznyi dom “LIBROKOM”, 2010. 456 p.

14.  Svelto O. Principles of lasers. 5th Ed. Springer, New York, Dordrecht, Heidelberg, London, 2010. 620 p.

15.  Berry A.J., Hanna D.C., Sawyers C.C. High power single frequency operation of a Q-switched TEM00 mode Nd:YAG laser // Optics Communications. 1981. V. 40. № 1. P. 54–58. https://doi.org/10.1016/0030-4018(81)90270-4

16.  Bjorkholm J.E., Stolen R.H. A simple single-mode giant-pulse ruby laser // J. Appl. Phys. 1968. V. 39. № 8. P. 4043–4044. https://doi.org/10.1063/1.1656911.

17.  Kisel V.E., Yasukevich A.S., Kondratyuk N.V., Kuleshov N.V. Diode-pumped passively Q-switched high-repetition-rate Yb microchip laser // Quantum Electronics. 2009. V. 39. № 11. P. 1018–1022. https://doi.org/10.1070/QE2009v039n11ABEH014151

18. Dascalu T., Pavel N., Lupei V., Philipps G., Beck Th., Weber H. Investigation of a passive Q-switched, externally controlled, quasicontinuous or continuous pumped Nd:YAG laser // Opt. Eng. 1996. V. 35. № 5. P. 1247–1251. https://doi.org/10.1117/1.600670

19.  Zhang X., Zhao Sh., Wang Q., Zhang Q., Sun L., Zhang Sh. Optimization of Cr4+-doped saturable-absorber Q-switched lasers // IEEE J. Quantum Electron. 1997. V. 33. № 12. P. 2286–2294. https://doi.org/10.1109/3.644112

20. Tsunekane M., Taira T. Direct measurement of temporal transmission distribution of a saturable absorber in a passively Q-switched laser // IEEE J. Quantum Electron. 2016. V. 52. № 5. P. 5200107 (1–7). http://doi.org/ 10.1109/JQE.2016.2541922

21.  Dong J., Deng P., Xu J., Gan F. Investigation of absorption spectra of (Cr4+,Yb3+):YAG crystal // Proceeding of SPIE. 1999 (Int. Conf. on Industrial Lasers, 8 September 1999). V. 3862. P. 194–198. http://doi.org/ 10.1117/12.361135

22. Yumashev K.V., Denisov I.A., Posnov N.N., Kuleshov N.V., Moncorge R. Excited state absorption and passive Q-switch performance of Co2+ doped oxide crystals // J. of Alloys and Compounds. 2002. V. 341. P. 366–370. https://doi.org/10.1016/S0925-8388(02)00039-7

23. Goldstein A., Loiko P., Burshtein Z., Skoptsov N., Glazunov I., Galun E., Kuleshov N., Yumashev K. Development of saturable absorbers for laser passive Q-switching near 1.5 µm based on transparent ceramic Co2+:MgAl2O4 // J. Am. Ceram. Soc. 2016. V. 99. № 4. P. 1324–1331. https://doi.org/10.1111/jace.14102

24. Ryabtsev G.I., Bezyazychnaya T.V., Bogdanovich M.V., Grigor’ev A.V., Kabanov V.V., Lebiadok Y.V., Ryabtsev A.G., Shchemelev M.A. Optimized diode-pumped passive Q-switched ytterbium-erbium glass laser // Appl. Phys. B. 2012. V. 108. P. 283–288. http://dx.doi.org/10.1007/s00340-012-5036-3

25. Bogdanovich M.V., Izyneev A.A., Lantsov K.I., Lepchenkov K.V., Ryabtsev A.G., Pavlovskii V.N., Sadovskii P.I., Svitenkov I.E., Shchemelev M.A. Temperature effects on the optical parameters of a passively Q-switched diode-side pumped Yb,Er-laser // Journal of Applied Spectroscopy. 2018. V. 85. № 1. P. 48–54. https://doi.org/10.1007/s10812-018-0610-z

26. Kisel' V.E., Shcherbitskii1 V.G., Kuleshov N.V., Postnova L.I., Levchenko V.I., Galagan B.I., Denker B.I., Sverchkov S.E. Passive Q-switches for a diode-pumped erbium glass laser // Quantum Electronics. 2005. V. 35. № 7. P. 611–614. http://doi.org/ 10.1070/QE2005v035n07ABEH008954

27. Bogdanovich M.V., Grigor′ev A.V., Lantsov K.I., Lebiadok Y.V., Lepchenkov K.V., Ryabtsev A.G., Ryabtsev G.I., Shchemelev M.A. Amplified luminescence and parasitic laser modes in the active medium of a transverse diode-pumped Nd:YAG laser // Journal of Applied Spectroscopy. 2015. V. 82. № 1. P. 573–577. https://doi.org/10.1007/s10812-015-0147-3

28. Bogdanovich M.V., Grigor’ev A.V., Ryabtsev A.G., Ryabtsev G.I., Shpak P.V., Shchemelev M.A., Lepchenkov K.V., Lantsov K.I., Dudikov V.N., Kot A.M. Amplified luminescence and nonaxial radiation modes in the active elements of high-power diode side-pumped solid-state lasers // Journal of Optical Technology. 2018. V. 85. № 9. P. 546–550. https://doi.org/10.1364/JOT.85.000546

29. Hercher M. An analysis of saturable absorbers // Applied Optics. 1967. V. 6. № 5. P. 947–954. https://doi.org/10.1364/AO.6.000947

30. Demchuk M.I., Kuleshov N.V., Mikhailov V.P. Saturable absorbers based on impurity and defect centers in crystals // IEEE J. Quantum Electron. 1994. V. 30. № 9. P. 2120–2126. https://doi.org/10.1109/3.309872

31.  Tsunekane M., Taira T. Direct measurement of temporal transmission distribution of a saturable absorber in a passively Q-switched laser // IEEE J. Quantum Electron. 2016. V. 52. № 5. P. 5200107 (1–7). http://doi.org/ 10.1109/JQE.2016.2541922

32. Bogdanovich M.V., Grigor’ev A.V., Dudikov V.N., Ryabtsev A.G., Ryabtsev G.I., Tatura P.O., Shpak P.V., Teplyashin L.L., Boltaev G.S. Characteristics of diode side-pumped Nd:YAG laser with Cr:YAG passive Q-switch within wide temperature range // Journal of Applied Spectroscopy. 2023. V. 90. № 2. P. 246–250. https://doi.org/10.1007/s10812-023-01528-4

33. Metody rastchyeta opticheskikh kvantovykh generatorov: In four volumes / Ed. by B.I. Stepanov. Minsk: Nauka i technika, 1968. V. 1–4.

34.      Bogdanovich M.V., Grigor’ev A.V., Dudikov V.N., Ryabtsev A.G., Ryabtsev G.I., Tatura P.O., Shpak P.V., Shchemelev M.A. Thermally induced birefringence and mode selection in the cavity of a passively Q-switched diode-pumped Nd:YAG laser // Journal of Applied Spectroscopy. 2022. V. 89. № 2. P. 835–838. https://doi.org/10.1007/s10812-022-01433-2