DOI: 10.17586/1023-5086-2023-90-08-55-63
УДК: 535-14, 535.3
Estimation of image reconstruction quality in multiplex terahertz ghost imaging
Full text on elibrary.ru
Publication in Journal of Optical Technology
Исмагилов А.О., Лаппо-Данилевская А.К., Калиничев А.А., Цыпкин А.Н. Оценка качества восстановления изображения в случае мультиплексной терагерцовой фантомной визуализации // Оптический журнал. 2023. Т. 90. № 8. С. 55–63. http://doi.org/10.17586/1023-5086-2023-90-08-55-63
Ismagilov A.O., Lappo-Danilevskaya A.K., Kalinichev A.A., Tcypkin A.N. Estimation of image reconstruction quality in multiplex terahertz ghost imaging [In Russian] // Opticheskii Zhurnal. 2023. V. 90. № 8. P. 55–63. http://doi.org/10.17586/1023-5086-2023-90-08-55-63
Subject of study. The dependency of structural similarity index between the reconstructed and the reference images in the case of multiplexed terahertz ghost imaging on the used frequency ranges of broadband terahertz radiation. Aim of study. The assessment of the broadband terahertz frequency bands’ selection impact on the structural similarity index between the reconstructed and the reference images. Method. The developed mathematical model allows to obtain speckle-structures images formed during the radiation propagation through a transparent heterogeneous phase object on separate frequency components of the used broadband terahertz radiation. Similar images of speckle-structures can be obtained in an experiment using an electrooptical detection. The image reconstruction was carried out by means of the multiplexed terahertz ghost imaging. Main results. The used mathematical model is described. The dependencies of the structural similarity index between the reconstructed and the reference images on iterations number for different frequency ranges of broadband terahertz radiation are presented. Practical significance. The results of this work can be used to adjust the multiplexed terahertz ghost imaging system in order to achieve the optimal ratio between the number of necessary measurements and the quality of the reconstructed image.
terahertz radiation, multiplexing, ghost imaging, structural similarity index, broadband radiation
Acknowledgements:OCIS codes: 110.3010; 110.6795
References:1. Valušis G., Lisauskas A., Yuan H. et al. Roadmap of terahertz imaging 2021 // Sensors. Multidisciplinary Digital Publishing Institute. 2021. V. 21. № 12. P. 4092. https://doi.org/10.3390/s21124092
2. Naftaly M., Miles R.E. Terahertz time-domain spectroscopy for material characterization // Proc. IEEE. 2007. V. 95. № 8. P. 1658–1665. https://doi.org/10.1109/JPROC.2007.898835
3. Smolyanskaya O.A., Chernomyrdin N.V., Konovko A.A. et al. Terahertz biophotonics as a tool for studies of dielectric and spectral properties of biological tissues and liquids // Prog. Quantum Electron. 2018. V. 62. P. 1–77. https://doi.org/10.1016/j.pquantelec.2018.10.001
4. Sirro S., Odlyanitskiy E., Portieri A. et al. TeraPulse Lx for terahertz imaging of painting on canvas // J. Phys. Conf. Ser. IOP Publishing. 2021. V. 1866. № 1. P. 012004. https://doi.org/10.1088/1742-6596/1866/1/012004
5. Guillet J. P., Roux M., Wang K., Ma X. et al. Art painting diagnostic before restoration with terahertz and millimeter waves // J. Infrared Millim. Terahertz Waves. 2017. V. 38. № 4. P. 369–379. https://doi.org/10.1088/1742-6596/1866/1/012004
6. Elayan H., Amin O., Shubair R.M., Alouini M.S. Terahertz communication: The opportunities of wireless technology beyond 5G // 2018 International Conference on Advanced Communication Technologies and Networking (CommNet). 2018. P. 1–5. https://doi.org/10.1109/COMMNET.2018.8360286
7. Liu X., Melnik M., Zhukova M. et al. Formation of gigahertz pulse train by chirped terahertz pulses interference // Sci. Rep. Nature Publishing Group. 2020. V. 10. № 1. P. 9463. https://doi.org/10.1038/s41598-020-66437-4
8. Zhu Y.L., She R.B., Liu W.Q. et al. Deep learning optimized terahertz single-pixel imaging // IEEE Trans. Terahertz Sci. Technol. 2022. V. 12. № 2. P. 165–172. https://doi.org/10.1109/TTHZ.2021.3132160
9. Zhang A.X., He Y.H., Wu L.A. et al. Tabletop x-ray ghost imaging with ultra-low radiation // Optica. Optica Publishing Group. 2018. V. 5. № 4. P. 374–377. https://doi.org/10.1364/OPTICA.5.000374
10. Zhang Y., Li W., Wu H. et al. High-visibility underwater ghost imaging in low illumination // Opt. Commun. 2019. V. 441. P. 45–48. https://doi.org/10.1016/j.optcom.2019.02.036
11. Shi X., Huang X., Nan S. et al. Image quality enhancement in low-light-level ghost imaging using modified compressive sensing method // Laser Phys. Lett. IOP Publishing, 2018. V. 15. № 4. P. 045204. https://doi.org/10.1088/1612-202X/aaa5f6
12. Padgett M.J., Boyd R.W. An introduction to ghost imaging: quantum and classical // Philos. Trans. R. Soc. Math. Phys. Eng. Sci. Royal Society. 2017. V. 375. № 2099. P. 20160233. https://doi.org/10.1098/rsta.2016.0233
13. Bromberg Y., Katz O., Silberberg Y. Ghost imaging with a single detector // Phys. Rev. A. American Physical Society. 2009. V. 79. № 5. P. 053840. https://doi.org/10.1103/PhysRevA.79.053840
14. Wu D., Luo J., Huang G. et al. Imaging biological tissue with high-throughput single-pixel compressive holography // Nat. Commun. Nature Publishing Group. 2021. V. 12. № 1. P. 4712. https://doi.org/10.1038/s41467-021-24990-0
15. Peller J., Farahi F., Trammell S.R. Hyperspectral imaging system based on a single-pixel camera design for detecting differences in tissue properties // Appl. Opt. Optica Publishing Group. 2018. V. 57. № 27. P. 7651–7658. https://doi.org/10.1364/AO.57.007651
16. Yamanaka M., Hayakawa N., Nishizawa N. High-spatial-resolution deep tissue imaging with spectral-domain optical coherence microscopy in the 1700 nm spectral band // J. Biomed. Opt. SPIE, 2019. V. 24. № 7. P. 070502. https://doi.org/10.1117/1.JBO.24.7.070502
17. Shen H., Gan L., Newman N. et al. Spinning disk for compressive imaging // Opt. Lett. Optica Publishing Group. 2012. V. 37. № 1. P. 46–48. https://doi.org/10.1364/OL.37.000046
18. Lenets V.A., Kuznetsov S.A., Sayanskiy A.D. et al. Manipulation with terahertz wave fronts using self-complementary metasurfaces // 2020 Fourteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials). 2020. P. 294–296. https://doi.org/10.1109/Metamaterials49557.2020.9285140
19. Leibov L., Ismagilov A., Zalipaev V. et al. Speckle patterns formed by broadband terahertz radiation and their applications for ghost imaging // Sci. Rep. Nature Publishing Group. 2021. V. 11. № 1. P. 20071. https://doi.org/10.1038/s41598-021-99508-1
20. Vallés A., He J., Ohno S. et al. Broadband high-resolution terahertz single-pixel imaging // Opt. Express. Optica Publishing Group. 2020. V. 28. № 20. P. 28868–28881. https://doi.org/10.1364/OE.404143
21. Ismagilov A., Lappo-Danilevskaya A., Grachev Y. et al. Ghost imaging via spectral multiplexing in the broadband terahertz range // J. Opt. Soc. Am. B. 2022. V. 39. № 9. P. 2335. https://doi.org/10.1364/JOSAB.465222
22. Deng C., Suo J., Wang Y. et al. Single-shot thermal ghost imaging using wavelength-division multiplexing // Appl. Phys. Lett. American Institute of Physics. 2018. V. 112. № 5. P. 051107. https://doi.org/10.1063/1.5001750
23. Zhang D.J., Li H.G., Zhao Q.L. et al. Wavelength-multiplexing ghost imaging // Phys. Rev. A. American Physical Society. 2015. V. 92. № 1. P. 013823. https://doi.org/10.1103/PhysRevA.92.013823
24. Artser I., Melnik M., Ismagilov A. et al. Radiation shift from triple to quadruple frequency caused by the interaction of terahertz pulses with a nonlinear Kerr medium // Sci. Rep. Nature Publishing Group. 2022. V. 12. № 1. P. 9019. https://doi.org/10.1038/s41598-022-13445-1
25. Petrov N.V., Pavlov P.V., Malov A.N. Numerical simulation of optical vortex propagation and reflection by the methods of scalar diffraction theory // Quantum Electronics. IOP Publishing. 2013. V. 43. № 6. P. 582. https://doi.org/10.1070/QE2013v043n06ABEH015190
26. Goodman J.W. Speckle phenomena in optics: Theory and applications. Greenwood Village: Roberts and Company Publishers, 2007. 422 p.
27. Grachev Y.V., Kokliushkin V.A., Petrov N.V. Open-source 3D-printed terahertz pulse time-domain holographic detection module // Appl. Opt. Optica Publishing Group. 2022. V. 61. № 5. P. B307–B313. https://doi.org/10.1364/AO.444979
28. Horstmeyer R., Heintzmann R., Popescu G. et al. Standardizing the resolution claims for coherent microscopy // Nat. Photonics. Nature Publishing Group. 2016. V. 10. № 2. P. 68–71. https://doi.org/10.1038/nphoton.2015.279
29. Wang Z., Bovik A. C., Sheikh H. R., Simoncelli E. P. Image quality assessment: from error visibility to structural similarity // IEEE Trans. Image Process. 2004. V. 13. № 4. P. 600–612. https://doi.org/10.1109/TIP.2003.819861