ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-08-87-95

УДК: 535.3

Design of high sensitivity on-chip temperature waveguide sensor based on sensitive cladding

For Russian citation (Opticheskii Zhurnal):

Hu Cong, Shi Yunying, Zhou Tian, Wan Chunting, Xu Chuanpei, Zhu Aijun. Design of high sensitivity on-chip temperature waveguide sensor based on sensitive cladding (Высокочувствительный встроенный волноводный датчик температуры на основе чувствительного покрытия) [на англ. языке] // Оптический журнал. 2023. Т. 90. № 8. С. 87–95. http://doi.org/10.17586/1023-5086-2023-90-08-87-95

 

Hu Cong, Shi Yunying, Zhou Tian, Wan Chunting, Xu Chuanpei, Zhu Aijun. Design of high sensitivity on-chip temperature waveguide sensor based on sensitive cladding [in English] // Opticheskii Zhurnal. 2023. V. 90. № 8. P. 87–95. http://doi.org/10.17586/1023-5086-2023-90-08-87-95

For citation (Journal of Optical Technology):
Cong Hu, Yunying Shi, Tian Zhou, Chunting Wan, Chuanpei Xu, and Aijun Zhu, "Design of high sensitivity on-chip temperature waveguide sensor based on sensitive cladding," Journal of Optical Technology. 90(8), 470-475 (2023). https://doi.org/10.1364/JOT.90.000470
Abstract:

Subject of study. This paper introduces a high-sensitivity on-chip temperature waveguide sensor based on sensitive cladding. Purpose of the work. The operating temperature of integrated circuit has an important influence on the efficient and stable operation of the circuit system. Therefore, on-chip temperature sensor plays an important role in the normal use of the integrated circuit chip. Method. By coating the sensor waveguide structure with temperature-sensitive materials a new hybrid sensor waveguide is formed to increase the sensitivity of the waveguide to temperature changes. The waveguide structure of the sensor adopts a typical all-pass microring resonator as the basic structure of the sensor. The surface of the waveguide is coated with ethanol, which is more sensitive to temperature, to increase the temperature sensitivity of the waveguide structure and realize the improvement of the sensitivity of the temperature sensor. Main results. When the designed radius of the sensor is 3.34 µm and the coating thickness of the temperature-sensitive material cladding is 0.12 µm, the experimental results show that the sensitivity of the sensor reaches 105 pm/°, and it has good linearity. Practical significance. Compared with the currently reported studies on cladding sensors, there are certain improvements and enhancements in terms of sensitivity and sensor size. At the same time, it provides a solution for the research and design of on-chip temperature sensor.

Keywords:

microring resonator, temperature sensor, sensitive cladding, micro-nanodevices, system on chip

Acknowledgements:

We are thankful to the reviewers for the valuable suggestion.

Funding: This work is supported by National Natural Science Foundation of China (61861012,2161008), Guangxi Key Laboratory of Automatic Detecting Technology and Instruments (YQ21105), Science Foundation of Guilin University of Aerospace Technology (XJ20KT09) and Research Basic Ability Improvement Project for Young and Middle-aged Teachers of Guangxi Universities (2021KY0800).

OCIS codes: 120.678.

References:

1.    Zhang L., Jie L, Zhang M., Wang Y., Xie Y., Shi Y., Dai D. Ultrahigh-Q silicon racetrack resonators // Photonics research (Washington, DC). 2020. V. 8. № 5. P. 684. https://doi.org/CNKI:SUN:GZXJ.0.2020-05-008

2.   Bogaerts W., De Heyn P., Van Vaerenbergh T., De Vos K., Kumar Selvaraja S., Claes T., Dumon P., Bienstman P., Van Thourhout D., Baets R. Silicon microring resonators // Laser & Photonics Reviews. 2012. V. 6. № 1. P. 47–73. https://doi.org/ 10.1002/lpor.201100017

3.   Zhang Y., Zou J., He J. Temperature sensor with enhanced sensitivity based on silicon Mach–Zehnder interferometer with waveguide group index engineering // Optics Express. 2018. V. 26. № 20. P. 26057. https://doi.org/ 10.1364/OE.26.026057

4.   Cocorullo G., Corte F G D., Rendina I., Sarro PM. Thermo-optic effect exploitation in silicon microstructures // Sensors and Actuators A-Physical. 1998. V. 19. P. 19–26. https://doi.org/10.1016/S0924-4247(98)00168-X

5.   Liang Z., Xu C., Zhu A., Hu C., Du S., Zhao C. Directional coupling surface plasmon polariton electro-optic modulator for optical ring networks-on-chip // Journal of Optical Technology. 2020. V. 87. № 9. P. 542–553. https://doi.org/ 10.1364/JOT.87.000542

6.   Zegadi R., Ziet L., Zegadi A. Design of high sensitive temperature sensor based on two-dimensional photonic crystal // Silicon. 2020. V. 12. № 9. P. 2133–2139. https://doi.org/10.1007/s12633-019-00303-5

7.    Kotlyar V.V., Shuyupova Ya.O. Calculating the modes of a photonic-crystal lightguide by a difference method // Journal of Optical Technology. 2007. V. 74. P. 600–608. https://doi.org/10.1364/JOT.74.000600

8.   Xie Y., Zhang M., Dai D. Design rule of Mach–Zehnder interferometer sensors for ultra-high sensitivity // Sensors. 2020. V. 20. № 9. P. 2640. https://doi.org/10.3390/s20092640

9.   Zhao C.Y., Zhang L., Zhang C.M. Compact SOI optimized slot microring coupled phase-shifted Bragg grating resonator for sensing // Optics Communications. 2018. V. 414. P. 212–216. https://doi.org/10.1016/J.OPTCOM.2018.01.010

10. Hu C., Shi Y., Zhou T., Xu C., Zhu A. A small size on-chip temperature sensor based on a microring resonator // Silicon. 2021. P. 1–8. https://doi.org/10.1007/S12633-021-01247-5

11.  Tian C., Zhang H., Li W., Huang X., Liu J., Huang A., Xiao Z. Temperature sensor of high-sensitivity based on nested ring resonator by Vernier effect // Optik. 2020. V. 204. P. 164118. https://doi.org/10.1016/j.ijleo.2019.164118

12.  Minzioni P., Lacava C., Tanabe T., Dong J., Hu X., Csaba G., Porod W., Singh G., Willner A E., Almai-man A., Torres-Company V., Schroder J., Peacock A C., Strain M J., Parmigiani F., Contestabile G., Marpaung D., Liu Z., Bowers J E., Chang L., Fabbri S., Vazquez M R., Bharadwaj V., Eaton S M., Lodahl P., Zhang X., Eggleton B J., Munro W J., Nemoto K., Morin O., Laurat J., Nunn J. Roadmap on all-optical proces-sing // Journal of Optics. 2019. V. 21. № 6. P. 1. https://doi.org/10.1088/2040-8986/ab0e66

13.  Cheng Q., Dai L.Y., Abrams N.C., Hung Y., Morrissey P.E., Glick M., O Brien P., Bergman K. Ultralow-crosstalk, strictly non-blocking microring-based optical switch // Photonics research (Washington, DC). 2019. V. 7. № 2. P. 155. https://doi.org/CNKI:SUN:GZXJ.0.2019-02-008

14.  Zhu H., He J., Shao L., Li M. Ultra-high sensitivity optical sensors based on cascaded two Fabry–Perot interferometers // Sensors and Actuators B: Chemical. 2018. V. 277. P. 152–156. https://doi.org/10.1016/j.snb.2018.08.091

15.  Wu N., Xia L. High-Q and high-sensitivity multihole slot microring resonator and its sensing performance // Physica scripta. 2019. V. 94. № 11. P. 115512. https://doi.org/10.1088/1402-4896/ab3266

16.  Wang C., Wang C., Yu J., Kuo I., Tseng C., Jau H., Chen Y., Lin T. Highly sensitive optical temperature sensor based on a SiN micro-ring resonator with liquid crystal cladding // Optics Express. 2016. V. 24. № 2. P. 1002. https://doi.org/10.1364/OE.24.001002

17.  Fu X., Xie H., Yang C., Zhang S., Fu G., Bi W. Research on the temperature sensing characteristics of triple cladding quartz specialty fiber based on cladding mode resonance // Acta Physica Sinica. 2016. V. 65. № 02. P. 171–179. https://doi.org/10.7498/aps.65.024211

18. Li X., Wang L., Guo S., Li Z., Yang M. Doubled temperature measurement range for a single micro-ring sensor // Acta Physica Sinica. 2014. V. 63. № 15. P. 197–202. https://doi.org/10.7498/aps.63.154209

19.  Kim G.D., Lee H.S., Park C.H., Lee S.S., Lim B.T., Bae H.K., Lee W.G. Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process // Opt Express. 2010. V. 18. № 21. P. 22215–22221. https://doi.org/10.1364/OE.18.022215

20.      Qi Y., Zhang T., Guo J., Bao-He Z., Xiang-Xian W. High performance temperature and refractive index dual-purpose sensor based on the ethanol-sealed metaldielectric-metal waveguide // Acta Physica Sinica. 2020. V. 69. № 16. P. 233–242. https://doi.org/10.7498/aps.69.20200405