DOI: 10.17586/1023-5086-2023-90-08-87-95
УДК: 535.3
Design of high sensitivity on-chip temperature waveguide sensor based on sensitive cladding
Full text on elibrary.ru
Publication in Journal of Optical Technology
Hu Cong, Shi Yunying, Zhou Tian, Wan Chunting, Xu Chuanpei, Zhu Aijun. Design of high sensitivity on-chip temperature waveguide sensor based on sensitive cladding (Высокочувствительный встроенный волноводный датчик температуры на основе чувствительного покрытия) [на англ. языке] // Оптический журнал. 2023. Т. 90. № 8. С. 87–95. http://doi.org/10.17586/1023-5086-2023-90-08-87-95
Hu Cong, Shi Yunying, Zhou Tian, Wan Chunting, Xu Chuanpei, Zhu Aijun. Design of high sensitivity on-chip temperature waveguide sensor based on sensitive cladding [in English] // Opticheskii Zhurnal. 2023. V. 90. № 8. P. 87–95. http://doi.org/10.17586/1023-5086-2023-90-08-87-95
Subject of study. This paper introduces a high-sensitivity on-chip temperature waveguide sensor based on sensitive cladding. Purpose of the work. The operating temperature of integrated circuit has an important influence on the efficient and stable operation of the circuit system. Therefore, on-chip temperature sensor plays an important role in the normal use of the integrated circuit chip. Method. By coating the sensor waveguide structure with temperature-sensitive materials a new hybrid sensor waveguide is formed to increase the sensitivity of the waveguide to temperature changes. The waveguide structure of the sensor adopts a typical all-pass microring resonator as the basic structure of the sensor. The surface of the waveguide is coated with ethanol, which is more sensitive to temperature, to increase the temperature sensitivity of the waveguide structure and realize the improvement of the sensitivity of the temperature sensor. Main results. When the designed radius of the sensor is 3.34 µm and the coating thickness of the temperature-sensitive material cladding is 0.12 µm, the experimental results show that the sensitivity of the sensor reaches 105 pm/°, and it has good linearity. Practical significance. Compared with the currently reported studies on cladding sensors, there are certain improvements and enhancements in terms of sensitivity and sensor size. At the same time, it provides a solution for the research and design of on-chip temperature sensor.
microring resonator, temperature sensor, sensitive cladding, micro-nanodevices, system on chip
Acknowledgements:We are thankful to the reviewers for the valuable suggestion.
Funding: This work is supported by National Natural Science Foundation of China (61861012,2161008), Guangxi Key Laboratory of Automatic Detecting Technology and Instruments (YQ21105), Science Foundation of Guilin University of Aerospace Technology (XJ20KT09) and Research Basic Ability Improvement Project for Young and Middle-aged Teachers of Guangxi Universities (2021KY0800).
OCIS codes: 120.678.
References:1. Zhang L., Jie L, Zhang M., Wang Y., Xie Y., Shi Y., Dai D. Ultrahigh-Q silicon racetrack resonators // Photonics research (Washington, DC). 2020. V. 8. № 5. P. 684. https://doi.org/CNKI:SUN:GZXJ.0.2020-05-008
2. Bogaerts W., De Heyn P., Van Vaerenbergh T., De Vos K., Kumar Selvaraja S., Claes T., Dumon P., Bienstman P., Van Thourhout D., Baets R. Silicon microring resonators // Laser & Photonics Reviews. 2012. V. 6. № 1. P. 47–73. https://doi.org/ 10.1002/lpor.201100017
3. Zhang Y., Zou J., He J. Temperature sensor with enhanced sensitivity based on silicon Mach–Zehnder interferometer with waveguide group index engineering // Optics Express. 2018. V. 26. № 20. P. 26057. https://doi.org/ 10.1364/OE.26.026057
4. Cocorullo G., Corte F G D., Rendina I., Sarro PM. Thermo-optic effect exploitation in silicon microstructures // Sensors and Actuators A-Physical. 1998. V. 19. P. 19–26. https://doi.org/10.1016/S0924-4247(98)00168-X
5. Liang Z., Xu C., Zhu A., Hu C., Du S., Zhao C. Directional coupling surface plasmon polariton electro-optic modulator for optical ring networks-on-chip // Journal of Optical Technology. 2020. V. 87. № 9. P. 542–553. https://doi.org/ 10.1364/JOT.87.000542
6. Zegadi R., Ziet L., Zegadi A. Design of high sensitive temperature sensor based on two-dimensional photonic crystal // Silicon. 2020. V. 12. № 9. P. 2133–2139. https://doi.org/10.1007/s12633-019-00303-5
7. Kotlyar V.V., Shuyupova Ya.O. Calculating the modes of a photonic-crystal lightguide by a difference method // Journal of Optical Technology. 2007. V. 74. P. 600–608. https://doi.org/10.1364/JOT.74.000600
8. Xie Y., Zhang M., Dai D. Design rule of Mach–Zehnder interferometer sensors for ultra-high sensitivity // Sensors. 2020. V. 20. № 9. P. 2640. https://doi.org/10.3390/s20092640
9. Zhao C.Y., Zhang L., Zhang C.M. Compact SOI optimized slot microring coupled phase-shifted Bragg grating resonator for sensing // Optics Communications. 2018. V. 414. P. 212–216. https://doi.org/10.1016/J.OPTCOM.2018.01.010
10. Hu C., Shi Y., Zhou T., Xu C., Zhu A. A small size on-chip temperature sensor based on a microring resonator // Silicon. 2021. P. 1–8. https://doi.org/10.1007/S12633-021-01247-5
11. Tian C., Zhang H., Li W., Huang X., Liu J., Huang A., Xiao Z. Temperature sensor of high-sensitivity based on nested ring resonator by Vernier effect // Optik. 2020. V. 204. P. 164118. https://doi.org/10.1016/j.ijleo.2019.164118
12. Minzioni P., Lacava C., Tanabe T., Dong J., Hu X., Csaba G., Porod W., Singh G., Willner A E., Almai-man A., Torres-Company V., Schroder J., Peacock A C., Strain M J., Parmigiani F., Contestabile G., Marpaung D., Liu Z., Bowers J E., Chang L., Fabbri S., Vazquez M R., Bharadwaj V., Eaton S M., Lodahl P., Zhang X., Eggleton B J., Munro W J., Nemoto K., Morin O., Laurat J., Nunn J. Roadmap on all-optical proces-sing // Journal of Optics. 2019. V. 21. № 6. P. 1. https://doi.org/10.1088/2040-8986/ab0e66
13. Cheng Q., Dai L.Y., Abrams N.C., Hung Y., Morrissey P.E., Glick M., O Brien P., Bergman K. Ultralow-crosstalk, strictly non-blocking microring-based optical switch // Photonics research (Washington, DC). 2019. V. 7. № 2. P. 155. https://doi.org/CNKI:SUN:GZXJ.0.2019-02-008
14. Zhu H., He J., Shao L., Li M. Ultra-high sensitivity optical sensors based on cascaded two Fabry–Perot interferometers // Sensors and Actuators B: Chemical. 2018. V. 277. P. 152–156. https://doi.org/10.1016/j.snb.2018.08.091
15. Wu N., Xia L. High-Q and high-sensitivity multihole slot microring resonator and its sensing performance // Physica scripta. 2019. V. 94. № 11. P. 115512. https://doi.org/10.1088/1402-4896/ab3266
16. Wang C., Wang C., Yu J., Kuo I., Tseng C., Jau H., Chen Y., Lin T. Highly sensitive optical temperature sensor based on a SiN micro-ring resonator with liquid crystal cladding // Optics Express. 2016. V. 24. № 2. P. 1002. https://doi.org/10.1364/OE.24.001002
17. Fu X., Xie H., Yang C., Zhang S., Fu G., Bi W. Research on the temperature sensing characteristics of triple cladding quartz specialty fiber based on cladding mode resonance // Acta Physica Sinica. 2016. V. 65. № 02. P. 171–179. https://doi.org/10.7498/aps.65.024211
18. Li X., Wang L., Guo S., Li Z., Yang M. Doubled temperature measurement range for a single micro-ring sensor // Acta Physica Sinica. 2014. V. 63. № 15. P. 197–202. https://doi.org/10.7498/aps.63.154209
19. Kim G.D., Lee H.S., Park C.H., Lee S.S., Lim B.T., Bae H.K., Lee W.G. Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process // Opt Express. 2010. V. 18. № 21. P. 22215–22221. https://doi.org/10.1364/OE.18.022215
20. Qi Y., Zhang T., Guo J., Bao-He Z., Xiang-Xian W. High performance temperature and refractive index dual-purpose sensor based on the ethanol-sealed metaldielectric-metal waveguide // Acta Physica Sinica. 2020. V. 69. № 16. P. 233–242. https://doi.org/10.7498/aps.69.20200405