ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-09-114-119

УДК: 681.7.064.452

Numerical simulation of parameters of optical reflectors based on interference and metal coatings for the ultraviolet range of the spectrum

For Russian citation (Opticheskii Zhurnal):

Губанова Л.А., Зейгман Р.Е. Численное моделирование параметров оптических солнечных отражателей на основе интерференционных и металлических покрытий для ультрафиолетового диапазона спектра // Оптический журнал. 2023. Т. 90. № 9. С. 114–119. http://doi.org/10.17586/1023-5086-2023-90-09-114-119

 

Gubanova L.A., Zeygman R.E. Numerical simulation of parameters of optical reflectors based on interference and metal coatings for the ultraviolet range of the spectrum [in Russian] // Opticheskii Zhurnal. 2023. V. 90. № 9. P. 114–119. http://doi.org/10.17586/1023-5086-2023-90-09-114-119

For citation (Journal of Optical Technology):
L. A. Gubanova and R. E. Zeygman, "Numerical simulations to determine the parameters of ultraviolet optical reflectors based on interference coatings and metal coatings," Journal of Optical Technology. 90(9), 560-562 (2023). https://doi.org/10.1364/JOT.90.000560
Abstract:

The subject of the study. The design of an optical solar reflector, providing high integral reflection of more than 98% in the wavelength range 350–2500 nm and low absorption up to 0,041. The purpose of the work. Creation of optical solar reflectors based on interference coatings in order to solve the problem of heat removal and reflection of solar radiation from aircraft, which will increase their efficiency and duration of use. Method. The choice of an optical solar reflector was carried out on the basis of the synthesis of multilayer structures of interference systems, the selection of film-forming materials resistant to high temperatures, since optical solar reflectors withstand maximum temperatures on the surface of the spacecraft hull of 1260–1454 °C. The spectral characteristics were calculated using the matrix method. The obtained designs of interference mirrors, which include metal layers and layers of refractory oxides of oxides, make it possible to increase the reflection coefficient of radiation in the operating spectral range by choosing the thickness of the layers that make up the dielectric component of the mirror. The main results. The use of a dielectric mirror makes it possible to increase the reflection coefficient of an optical solar reflector, which includes a silver mirror, in the ultraviolet region of the spectrum by 18%. Calculations show that for the developed design of an optical solar reflector, its main characteristic is the solar absorption coefficient, which decreases from 0,049 (for pure silver) to 0,041 for a system that includes layers of silver and from 0,114 (calculated for pure aluminum under the condition of internal reflection) to 0,081 for a system that includes dielectric layers. The practical significance lies in solving the problem of thermoregulation and reflection of solar radiation from spacecraft, which is important for improving their performance and durability.

Keywords:

optical solar reflector, dielectric mirror, metal mirror, reflection in the ultraviolet region

OCIS codes: 310.1620, 310.3915, 310.4165

References:

1.    Salakhutdinov G.M. Thermal protection in space technology [in Russian]. Moscow: "Znanie" Publ., 1982. 64 p.

2.   Tsaplin S.V., Bolychev S.A., Romanov A.E. Heat transfer in space [in Russian]. Samara: Samara University, 2013. 56 p.

3.   Miyazaki E., Yamagata I. Results of space-environment exposure of the flexible optical solar reflector // J. Spacecraft and Rockets. 2009. V. 46. № 1. P. 28–32. http://dx.doi.org/10.2514/1.31855

4.   GOST R 59323–2021. (ISO 16691:2014). Space systems. Thermal control coatings for space vehicles. General requirements. [in Russian]. Introduction 06/01/2021 Federal Agency for Technical Regulation and Metrology. Moscow: ''Standartinform'' Publ., 2019. 27 p.

5.   Zhevtun I.G., Gordienko P.S. Thermoregulatng coating on titanium and its alloys // RF Patent № RU2751033. Bull. 2020. № 19.

6.   Kuznetsov V.D. Space weather and risks of space activities [in Russian] // Space Equip. and Technol. 2014. № 3(6). P. 3–13.

7.    Kiseleva L.V., Grigorievsky A.V. Thermoregulating coating of the class "Solar reflectors" // RF Patent № RU2574620C1. Bull. 2011. № 4.

8.   Vyatlev P.A, Goncharov K.A., Sigaev V.N. Analysis of the technology of manufacturing glass elements for thermo-optical coatings of space elements [in Russian] // Proc. MAI. 2018. № 102. P. 9.

9.   Wertz J.R., Larson W.J. Space mission analysis and design (2. print ed.). Dordrecht: Kluwer Academic, 1999. P. 380–381.

10. Finchenko V.S., Kotlyarov E.Yu., Ivankov A.A. Systems for providing thermal regimes for automatic interplanetary stations [in Russian]. Khimki: ''NPO Lavochkina'' Publ., 2018. 400 p.

11.  Thermal design examples spacecraft thermal control: Handbook // V. 1. Fundamental Technologies. Ed. by Gilmore D.G. / El Segundo, CA: Aerospace Press, 2002. Chapter 3. P. 71–137.

12.  Kovtun V.S., Korolev B.V., Sinyavsky V.V., et al. Space communication systems developed by S.P. Korolev Rocket and Space Corporation ''Energia'' [in Russian] // Space Technics and Technol. 2015. № 2(9). P. 3–24.

13.  Polevshchikov M.M. Stability of thermal control coatings to the impact of damaging factors of outer space in an orbit with a height of 20000 km [in Russian] // Reshetnevskiye Readings. 2012. № 16. P. 31–32.

14.  Svechkin V.P., Savelyev A.A., Sokolova S.P., et al. Thermal control coating K-208СР. Technology, properties and their changes in the operation process under the effect of space factors [in Russian] // Space Technics and Technol. 2017. № 2(17). P. 99–107.

15.  Drummeter L.F., Hass G. Solar absorptance and thermal emittance of evaporated coatings. N.Y.: Academic Press, 1965. 300 p.

16.  Metals and alloys: Handbook [in Russian] / Ed. by Solntsev Yu.P. St. Petersburg: ''Professional'' Publ., 2006. 1089 p.

17.       OST 3–1901–95. Coatings for optical parts. Types, basic parameters and methods of control. [in Russian] Introduction 09/01/1995. Moscow: ''Central Research Institute "Complex" Publ., 1995. 191 p.