ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-09-14-27

УДК: 771.351.76

Passive mechanical athermalization of the thermal imaging zoom lenses coupled to an uncooled matrix infrared detectors

For Russian citation (Opticheskii Zhurnal):

Грейсух Г.И., Левин И.А., Казин С.В. Пассивная механическая атермализация тепловизионного вариообъектива, сопряженного с неохлаждаемым приемником излучения // Оптический журнал. 2023. Т. 90. № 9. С. 14–27. http://doi.org/10.17586/1023-5086-2023-90-09-14-27

 

Greisukh G.I., Levin I.A., Kazin S.V. Passive mechanical athermalization of the thermal
imaging zoom lenses coupled to an uncooled matrix infrared detectors [in Russian] // Opticheskii
Zhurnal. 2023. V. 90. № 9. P. 14–27. http://doi.org/10.17586/1023-5086-2023-90-09-14-27

 

For citation (Journal of Optical Technology):
G. I. Greisukh, I. A. Levin, and S. V. Kazin, "Passive mechanical athermalization of thermal imaging zoom lenses coupled to an uncooled infrared matrix detector," Journal of Optical Technology. 90(9), 498-506 (2023). https://doi.org/10.1364/JOT.90.000498    
Abstract:

Subject of the study. Layouts and designs of thermal compensators for infrared zoom lenses operating with uncooled matrix infrared detector and allowing thermal defocusing to be eliminated by a passive mechanical method. Purpose of the study. Substantiation of the possibilities of achieving high optical performance in a wide range of operating temperatures for simple infrared zoom lenses with a binary variable focal length coupled with uncooled radiation receivers.  Research method. Theoretical analysis and mathematical modeling using the equations of geometric optics, dilatometry and rigorous diffraction theory. Main results. A three-component four-lens initial layout with a rotary assembly providing a binary change in the focal length of an infrared zoom lens is proposed. The potential possibilities of the proposed layout of the optical scheme are demonstrated by the example of calculating refractive-lens and refractive-diffractive varioobjectives designed to work with infrared radiation of the long-wave (8–12 µm) and dual medium- and long-wavelength ranges (3.4–11.4 µm) respectively. The possibility of maintaining the high optical characteristics of these zoom lenses in a wide range of operating temperatures (from –40 to +60 °C) due to the elimination of thermal defocusing by a passive mechanical method is substantiated. Structural features of thermal compensators are considered and mathematical relations of their design parameters and thermal defocusing values are obtained. Practical significance. The proposed layout and technical solutions for the composition and structure of thermal compensators make it possible to design thermal imaging zoom lenses that are simple in design and retain high optical performance over a wide range of operating temperatures.

Keywords:

infrared radiation, zoom lens, passive mechanical athermalization, uncooled matrix infrared detector, two-layer diffractive microstructure

Acknowledgements:

the study was supported by a grant from the Russian Science Foundation (project № 20-19-00081)

OCIS codes: 110.0110, 220.0220

References:

1.    Jamieson T.H. Athermalization of optical instruments from the optomechanical viewpoint // Proc. SPIE. 1992. V. 10265. P. 131–159. https://doi.org/10.1117/12.61105

2.   Ford E.H. Active temperature compensation of an infrared zoom lens // Proc. SPIE. 1997. V. 3129. P. 138–143. https://doi.org/10.1117/12.279085

3.   Greisukh G.I., Levin I.A., Kasin S.V. Active athermalization of dual-infrared zoom lenses [in Russian] // Comp. Opt. 2020. V. 44. № 6. P. 931–936. https://doi.org/10.18287/2412-6179-CO-775.

4.   Medvedev A.V., Grinkevich A.G., Knyazeva S.N. Athermalization of objectives of sighting and observation complexes as the means of functioning support of the facilities of Armament of Armored Force Vehicles (AAFV) // Photonics Russia. 2016. № 2(56). P. 94–109.

5.   Tissot J.L., Trouilleau C., Fieque B., et al. Uncooled microbolometer detector: Recent developments at Ulis // Opto-Electron. Rev. 2006. V. 14. № 1. P. 25–32. https://doi.org/10.2478/s11772-006-0004-2

6.   Keskin S., Akin T. The first fabricated dual-band uncooled infrared microbolometer detector with a tunable micro-mirror structure // Proc. SPIE. 2012. V. 8353. Р. 83531C. 11 p. https://doi.org/10.1117/12.964551

7.    Smith E.M., Panjwani D., Ginn J., et al. Dual band sensitivity enhancements of a VOx microbolometer array using a patterned gold black absorber // Appl. Opt. 2016. V. 55. № 8. P. 2071–2078. https://doi.org/10.1364/AO.55.002071

8.   Alaruri S.D. f/1.6 diffraction-limited air-spaced Cooke triplet photographic lens designs for MWIR and LWIR imaging applications: Geometrical optics performance comparison between Ge–ZnSe–Ge and Si–Ge–Si triplet designs using ZEMAX // Optik. 2016. V. 127. № 1. P. 254–258. https://doi.org/10.1016/j.ijleo.2015.10.085

9.   Greisukh G.I., Levin I.A, Ezhov E.G. Design of ultra-high-aperture dual-range athermal infrared objectives // Photonics. 2022. V. 9. № 10. P. 742. https://doi.org/10.3390/photonics9100742

10. Wenfeng M., Xin Z., Hemeng Q., et al. Broad dual-band kinoform infrared double-layer diffractive optical system design // Acta Optica Sinica. 2014. V. 34. № 10. P. 1022002. https://doi.org/10.3788/AOS201434.1022002

11.  Dong J., Zhang Y., Chen S., et al. Optical design and athermalization analysis of infrared dual band refractive-diffractive telephoto objective // Proc. SPIE. 2017. V. 10250. P. 102500H. https://doi.org/10.1117/12.2266733

12.  Mao S, Zhao J., He D. Analytical and comprehensive optimization design for multilayer diffractive optical elements in infrared dual band // Opt. Commun. 2020. V. 472. Р. 125831. https://doi.org/10.1016/j.optcom.2020.125831

13.  Vyachin V.V., Grinkevich A.V. Infrared lens with variable focal length // RF Patent № 2578268. Publication date 2016.03.27.

14.  SemiConductor [Electronic resource]. Access mode: https://www.scd.co.il/wp-content/uploads/2019/07/Bird640-17-ceramic_brochure_v3_PRINT.pdf (accessed 02/06/2023).

15.  ZEMAX [Electronic resource]. Access mode: https://www.zemax.com/products/opticstudio (аccessed 02/06/2023).

16.  IR Coatings Technical Information ISP [Electronic resource]. Access mode: https://ispoptics.wpengine.com/wp-content/uploads/2018/11/Broad-Band-AR-Coating-for-8-12-µm_Ge-1.pdf (аccessed 02/06/2023).

17.  Greisukh G.I., Ezhov E.G., Stepanov S.A. Taking diffractive efficiency into account in the design of refractive/diffractive optical systems // J. Opt. Technol. 2016. V. 83. № 3. P. 163–167. https://doi.org/10.1364/JOT.83.000163

18. Rahmlow Jr., T.D., Lazo-Wasem J.E., et al. Dual-band antireflection coatings on 3rd Gen lenses // Proc. SPIE. 2011. V. 8012. Р. 80123D (9 p). https://doi.org/10.1117/12.888100

19.       CDGM [Electronic resource]. Access mode: http://www.cdgmgd.com/go.htm?url=goods&k=HWS_Infrared_Glass (Accessed 02/06/2023).