DOI: 10.17586/1023-5086-2023-90-09-28-36
УДК: 681.7.068
Method of packaging a fiber Bragg grating for passive temperature compensation
Full text on elibrary.ru
Publication in Journal of Optical Technology
Куликова В.А., Варжель С.В., Дмитриев А.А., Волошина А.Л., Клишина В.А., Калязина Д.В. Методика корпусирования волоконной брэгговской решетки для ее пассивной температурной компенсации // Оптический журнал. 2023. Т. 90. № 9. С. 28–36. http://doi.org/10.17586/1023-5086-2023-90-09-28-36
Kulikova V.A., Varzhel S.V., Dmitriev A.A., Voloshina A.L., Klishina V.A., Kaliazina D.V. Method of packaging a fiber Bragg grating for passive temperature compensation [in Russian] // Opticheskii Zhurnal. 2023. V. 90. № 9. P. 28–36. http://doi.org/10.17586/1023-5086-2023-90-09-28-36
Subject of study. Theoretical and experimental study of the technique for creating a package for passive temperature compensation of a fiber Bragg grating. Aim of study. Development and research of the fiber Bragg grating packaging technique for passive temperature compensation. Method. Passive temperature compensation is based on grating deformation using a passive support made up of several materials with different coefficients of thermal expansion. The optical fiber, in which the Bragg grating was inscribed, is attached under a certain tension to an element with high coefficient of thermal expansion, which is attached to an element with low coefficient of thermal expansion. As the temperature increases, the compensating elements and the fiber grating will expand according to their coefficients of thermal expansion. Thus, the distance between the attachment points of the fiber to the element with high coefficient of thermal expansion will decrease, resulting in a decrease in fiber tension by exactly the amount necessary to compensate for the shift in the Bragg resonance of the grating caused by temperature change. Main results. In the course of this work, a new method of packaging the fiber Bragg grating for temperature compensation using a symmetrical passive support consisting of two materials with different coefficients of thermal expansion has been proposed. Using mathematical modeling, the main parameters of the proposed housing are calculated for the most effective temperature compensation. As a result of the experimental work, the temperature dependences of the Bragg resonance wavelength for an ordinary and athermal grating are presented. The Bragg wavelength shift for the grating in the package was 70 pm over the range from –15 to 105 °С. Practical significance. The scientific and technical solution proposed in the paper is of interest in various fields of fiber Bragg grating application, where the stability of the Bragg resonance wavelength plays a key role in the operation of systems.
fiber Bragg grating, Bragg grating packaging, passive thermal compensation, temperature, manufacturing process, athermalization
Acknowledgements:this work was supported by the Ministry of Science and Higher Education of Russian Federation, state assignment № 2019-0923
OCIS codes: 060.0060, 060.2310, 060.3735
References:1. Васильев С.А., Медведков О.И., Королев И.Г. и др. Волоконные решетки показателя преломления и их применения // Квант. электрон. 2005. Т. 35. № 12. С. 1085–1103. https://www.mathnet.ru/rus/qe/v35/i12/p1085
Vasil’ev S.A., Medvedkov O.I., Korolev I.G., et al. Fibre gratings and their applications // Quant. Electron. 2005. V. 35. № 12. P. 1085–1103. https://doi.org/10.1070/QE2005v035n12ABEH013041
2. Kadhim S.A., Kazr K.A., Ali A.H., et al. Fiber communication system based on FBG as dispersion compensator, design an experimental setup // J. Phys.: Conf. Ser. 2019. V. 1294. № 2. P. 22019. https://doi.org/10.1088/1742-6596/1294/2/022019
3. Yuksel K., Kinet D., Chah K., et al. Implementation of a mobile platform based on fiber Bragg grating sensors for automotive traffic monitoring // Sensors. 2020. V. 20. № 6. P. 1567. https://doi.org/10.3390/s20061567
4. Chang Y.-T., Yen C.-T., Wu Y.-S., et al. Using a fiber loop and fiber Bragg grating as a fiber optic sensor to simultaneously measure temperature and displacement // Sensors. 2013. V. 13. № 5. P. 6542–6551. https://doi.org/10.3390/s130506542
5. Díaz C.A.R., Leal-Junior A.G., André P.S.B., et al. Liquid level measurement based on FBG-embedded diaphragms with temperature compensation // IEEE Sens. J. 2018. V. 18. № 1. P. 193–200. https://doi.org/10.1109/JSEN.2017.2768510
6. Lo Y.-L., Kuo C.-P. Packaging a fiber Bragg grating without preloading in a simple athermal bimaterial device // IEEE Trans. Adv. Packag. 2002. V. 25. P. 50–53. https://doi.org/10.1109/TADVP.2002.1017685
7. Lo Y.-L., Kuo C.-P. Packaging a fiber Bragg grating with metal coating for an athermal design // J. Light. 2003. V. 21. № 5. P. 1377. https://doi.org/10.1109/JLT.2003.810925
8. Tong L., Jing Z., Yu'e K., et al. The wavelength shifting and temperature athermalization of fiber Bragg grating // Acta Opt. Sin. 2003. V. 23. № S1. P. 283.
9. Lee S.-M., Gu X. Passive temperature compensation package for optical long period fiber gratings // J. Opt. Soc. Korea. 1999. V. 3. № 2. P. 74–79. http://dx.doi.org/10.3807/JOSK.1999.3.2.074
10. Yoffe G.W., Krug P.A., Ouellette F., et al. Passive temperature-compensating package for optical fiber gratings // Appl. Opt. 1995. V. 34. № 30. P. 6859–6861. https://doi.org/10.1364/AO.34.006859
11. Lachance R.L., Van A.V., Morin M., et al. Adjustable athermal package for optical fiber devices // US Patent 6 907 164 B2. 2005. Publ. Jun. 14, 2005.
12. Tsai H.-H., Jang W.-Y., Yeh F.-F. Central wavelength tunable mechanism for temperature compensated package of fiber Bragg gratings // IEEE Trans. Adv. Packag. 2001. V. 24. № 1. P. 86–90. https://doi.org/10.1109/6040.909630
13. Morey W.W., Glomb W.L. Incorporated Bragg filter temperature compensated optical waveguide device // US Patent 5 042 898 A. 1991. Publ. Aug. 27, 1991.
14. Othonos A. Fiber Bragg gratings // Rev. Sci. Instrum. 1997. V. 68. № 12. P. 4309–4341. https://doi.org/10.1063/1.1148392
15. Cernuschi F., Eyring H. An elementary theory of condensation // J. Chem. Phys. 1939. V. 7. № 7. P. 547–551. https://doi.org/10.1063/1.1750485
16. Казанцев Е.И. Промышленные печи. Справочное руководство для расчетов и проектирования: учеб. пособ. для вузов. М.: Металлургия, 1975. 366 с.
Kazantsev E.I. Industrial furnaces. A reference guide for calculations and design: Textbook for universities [in Russian]. Moskow: ''Metallurgiya'' Publ., 1975.366 p.
17. Lemaire P.J., Atkins R.M., Mizrahi V., et al. High pressure H/sub 2/ loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO/sub 2/ doped optical fibres // Electron. Lett. 1993. V. 13. № 29. P. 1191–1193. https://doi.org/10.1049/el:19930796
18. Варжель С.В., Мунько А.С., Коннов К.А. и др. Запись решеток Брэгга в двулучепреломляющем оптическом волокне с эллиптической напрягающей оболочкой, подвергнутом водородной обработке // Оптический журнал. 2016. V. 83. № 10. P. 74–78.
Varzhel S.V., Mun'ko A.S., Konnov K.A., et al. Recording Bragg gratings in hydrogenated birefringent optical fiber with elliptical stress cladding// J. Opt. Technol. 2016. V. 83. № 10. P. 638–641. https://doi.org/10.1364/JOT.83.000638
19. Dmitriev A.A., Gribaev A.I., Varzhel S.V., et al. High-performance fiber Bragg gratings arrays inscription method // Opt. Fiber Technol. 2021. V. 63. P. 102508. https://doi.org/10.1016/j.yofte.2021.102508
20. Gribaev A.I., Pavlishin I.V., Stam A.M., et al. Laboratory setup for fiber Bragg gratings inscription based on Talbot interferometer // Opt. Quantum Electron. 2016. V. 48. № 12. P. 1–7. https://doi.org/10.1007/s11082-016-0816-3
21. Munko A.S., Varzhel S.V., Arkhipov S.V., et al. The study of the thermal annealing of the Bragg gratings induced in the hydrogenated birefringent optical fiber with an elliptical stress cladding // J. Phys.: Conf. Ser. 2016. V. 735. № 1. P. 012015. https://doi.org/10.1088/1742-6596/735/1/012015