DOI: 10.17586/1023-5086-2023-90-09-03-13
УДК: 535.317
Thermally non-configurable thermal-imaging optical systems
Full text on elibrary.ru
Publication in Journal of Optical Technology
Балаценко О.Н., Архипова Л.Н. Термонерасстраиваемые тепловизионные оптические системы // Оптический журнал. 2023. Т. 90. № 9. С. 3–13. http://doi.org/10.17586/1023-5086-2023-90-09-03-13
Balatsenko O.N., Arkhipova L.N. Thermally non-configurable thermal-imaging optical systems [in Russian] // Opticheskii Zhurnal. 2023. V. 90. № 9. P. 3–13. http://doi.org/10.17586/1023-5086-2023-90-09-03-13
Research subject. trends and circuit designs of thermally non-configurable thermal-imaging optical systems developed and manufactured over the recent years in the Vavilov State Optical Institute. Purpose. Review of current trends in the implemented domestic circuit designs for optical systems operating in middle and far infrared band based on spherical components and formulation of current research directions. Method. The developed circuit designs were based on using the algebraic method of designing optical systems by means of the passive athermalization theory. This method is based on special selection of materials for optical and housing parts of the device and calculation of beam paths in varying temperatures followed by calculation of image quality criteria. As a basic point in selecting possible materials for circuit elements, linear expansion coefficients, refraction index temperature variance coefficients, their interrelation with structural parameters are adopted with further calculation of the frequency-contrast response as the criterion of image quality most sensitive to varying conditions. Primary results. Primary trends are given for development of circuit designs as a summary table of available options (according to optical characteristics and features of optical circuits) of the implemented optical systems in the Vavilov State Optical Institute over the last several years. Practical significance. In terms of developing optical systems for devices operating in middle and far IR band, the technical solutions presented in the paper can act as an equivalent or a basic circuit for creating modernized optical systems both in terms of optical performance, elements and materials, and design solutions used in them.
thermal-imaging optical systems, thermally non-configurable optical systems, infrared band, multi-spectral systems, kinoform optical elements, aspheric surfaces
Acknowledgements:the presented optical systems are developed and manufactured in the Vavilov State Optical Institute
OCIS codes: 080.3620, 080.4035, 220.3620, 220.1250
References:1. Lebedev O.A., Salk S.V., Shevtsov S.E. Mirror-lens thermonetable lens // RF Patent № 26806565. Bull. 2019. № 6.
2. Grigoriev A.V., Chistyakov S.O., Bazhanova L.Yu. High-power infrared lens // RF Patent № 2718145. Bull. 2020. № 10.
3. Belousov A.I. Athermalized lens for the IR region of the spectrum // RF Patent Patent of the Russian Federation № 2538423. Bull. 2015. № 1.
4. Sokolsky M.N., Sovz I.E. A high-power lens for the infrared region of the spectrum // RF Patent № 2449327. Bull. 2012. № 12.
5. Hatsevich T.N., Zhuravlev P.V. Infrared high-power three-lens lens // RF Patent № 2348953. Bull. 2009. № 7.
6. Shishkin I.P., Shkadarevich A.P. Thermally stabilized thermal imaging lenses // Photonics. 2021. V. 15. № 2. P. 154–159. https://doi.org/10.22184/1993-7296
7. Tarasov V.V., Torshina I.P., Yakushenkov Yu.G. Modern problems of optometry [in Russian]: Textbook. Moscow: MIIGAiK Publ., 2014. 82 p.
8. Tarasov V.V., Yakushenkov Yu.G. Modern problems of infrared technology [in Russian]: Textbook. Moscow: MIIGAiK Publ., 2011. 84 p.
9. Grammatin A.P., Chan K.T. Method of constructing initial systems for thermal imaging lens lenses // J. Opt. Technol. 2008. V. 75. № 7. P. 30–34. https://doi.org/10.1364/JOT.75.000428
10. Khatsevich T.N., Grechenevskiy A.S. The analysis of objective lens designs with extended exit pupil for the thermal vision devices [in Russian] // Sci. and Techn. J. SGUGiT. 2020. V. 25. № 2. P. 259–275. https://doi.org/10.33764/2411-1759-2020-25-2-259-275
11. Khatsevich T.N, Druzhkin E.V. Analysis of objective lens for compact infrared devices using a two-component objective model [in Russian] // Sci. and Techn. J. SGUGiT.2018. V. 23. № 2. P. 245–261.
12. Garshin A.S., Andreev K.A. Calculation of thermo-tunable infrared lenses using diffraction surfaces [in Russian] // Sci. Tech. J. Inf. Technol. Mech. Opt. 2018. V. 18. № 6. P. 961–967. https://doi.org/10.17586/2226-1494-2018-18-6-961-967
13. Volosov D.S. Photographic optics [in Russian]. Moscow: ''Iskusstvo'' Publ., 1971. 672 p.
14. Slyusarev G.G. Methods of calculation of optical systems [in Russian]. Leningrad: ''Mashinostroenie'' Publ., 1969. 672 p.
15. Shramko Yu.P. The influence of the thermal regime of the porthole on the deformation of the wave front // J. Opt. Technol. 1972. № 3. P. 15–17.
16. Vasiliev V.N., Dmitriev I.Yu., Muravyev V.A., et al. Optical infrared range system with active focusing function [in Russian] // J. Instrum. Eng. 2019. V. 62. № 2. P. 136–141. https://doi.org/10.17586/0021-3454-2019-62-2-136-141
17. Ivanov S.E., Romanova G.E. Calculation of heat – stabilized achromatic IR lenses using a graphic method for choice of optical materials [in Russian] // J. Instrum. Eng. 2017. V. 60. № 3. P. 256–262. https://doi.org/10.17586/0021-3454-2017-60-3-256-262
18. Shchavelev O.S., Arkhipova L.N. Athermal optical glasses and thermostable space apochromates // J. Opt.Technol. 2003. V. 70. № 8. P. 576–585. https://doi.org/10.1364/JOT.70.000576
19. Grammatin A.P., Romanova G.E., Balatsenko O.N. Calculation and automation of optical systems design [in Russian]: Textbook. St. Petersburg: ITMO Research University, 2013. 128 р.
20. Zverev V.A., Krivopustova E.V., Tochilina T.V. Optical materials. Part 2. [in Russian]. Textbook for designers of optical systems and devices. St. Petersburg ITMO Research Institute, 2013. 248 p.
21. Electronic resource URL: https://astrohn.ru/product-category/thermal-lenses (Astron Design Bureau / Product catalog).
22. Dzitoev A.M., Lapovok E.V., Khankov S.I. Thermal aberrations of mirror telescopes [in Russian]: A monograph. St. Petersburg: A.F. Mozhaisky VKA Publ., 2016. 179 p.
23. Lyubarsky S.V., Khimich Yu.P. Optical mirrors made of unconventional materials // J. Opt. Technol. 1994. № 1. P. 76–83.