ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-09-37-44

УДК: 535-3, 53.096, 538.935

Conversion of the optical and noise characteristics of ultraviolet light-emitting diodes on a setup with a wide temperature measurement range from –196 to 100 °С

For Russian citation (Opticheskii Zhurnal):

Иванов А.М., Клочков А.В. Преобразование оптических и шумовых характеристик ультрафиолетовых светодиодов на установке с широким температурным диапазоном измерения от –196 до 100 °С. // Оптический журнал. 2023. Т. 90. № 9. С. 37–44. http://doi.org/10.17586/1023-5086-2023-90-09-37-44

 

Ivanov А.М., Klochkov А.V. Conversion of the optical and noise characteristics of ultraviolet light-emitting diodes on a setup with a wide temperature measurement range from –196 to 100 С [in Russian] // Opticheskii Zhurnal. 2023. V. 90. № 9. P. 37–44. http://doi.org/10.17586/1023-5086-2023-90-09-37-44

 

For citation (Journal of Optical Technology):
A. M. Ivanov and A. V. Klochkov, "Conversion of the optical and noise characteristics of ultraviolet light-emitting diodes on a setup with a wide temperature measurement of −196°C to 100°C," Journal of Optical Technology. 90(9), 512-516 (2023). https://doi.org/10.1364/JOT.90.000512
Abstract:

Subject of study. Temperature changes in the main optical and noise characteristics of ultraviolet InGaN/GaN industrial light-emitting diodes in a wide temperature range from –196 to 84 °С. Aim of study. Checking the operability of ultraviolet indicator light-emitting diodes under temperature conditions other than normal — room temperature, determination of relative changes in the main optical characteristics and reliability characteristics, discussion of possible physical mechanisms responsible for the observed changes. Method. Designed for temperature measurements from –196 to 100 °C, the measuring chamber uses a platinum temperature sensor with a polynomial approximation (from –200 to +100 °C). Noise characteristics were carried out by an STC-H246 Tuning-fork analog-to-digital converter, intrinsic noise level 1 µV. Main results. It has been found that heating improves the optical characteristics of ultraviolet InGaN/GaN light-emitting diodes; the density of low-frequency noise practically does not increase and only at nominal currents (20 mA) increase up to two times (40, 84 °С). This result diverges with the traditional ideas about the characteristics of semiconductor optoelectronic devices when they are heated. The proposed explanations are based on consideration of the features of carrier transport, with the involvement of the mechanism of carrier tunneling through defects and “tails” of the density of states in barriers to quantum wells (not used for this by other authors). Upon cooling (–196 °С), the density of low-frequency current noise increases, and the external quantum efficiency at the nominal current decreases by a factor of 1,6, which also differs from ordinary vision. Practical significance. From the applied point of view, the results of the work are of practical interest for the development and improvement of the technology of ultraviolet light-emitting devices based on structures with InGaN/GaN quantum wells, estimation of their reliability and service life; as well as for electronic equipment designers (using these elements) for applications in special climatic conditions, as it becomes possible to use in a wider range of operating currents and temperatures.

Keywords:

ultraviolet light-emitting diodes, temperature measurements, optical power, quantum efficiency, noise, defect tunneling

OCIS codes: 230.3670, 230.5590, 230.0250

References:

1.    Titkov I.E., Karpov S.Yu., Yadav A., et al. Efficiency of true-green light emitting diodes: non-uniformity and temperature effects // Materials. 2017. V. 10. № 11. P. 1323. https://doi.org/10.3390/ma10111323

2.   Шмидт Н.М., Шабунина Е.И., Черняков А.Е. и др. Температурное падение эффективности мощных синих InGaN/GaN-светодиодов // Письма в ЖТФ. 2020. Т. 46. № 24. C. 45–48. https://doi.org/10.21883/PJTF.2020.24.50429.18512

       Shmidt N.M., Shabunina E.I., Chernyakov A.E., et al. Temperature-dependent decrease in efficiency in power blue InGaN/GaN LEDs // Tech. Phys. Lett. 2020. V. 46. № 12. P. 1253–1256. https://doi.org/10.1134/S1063785020120275

3.   Wang Q., He L., Wang L., et al. Remarkably improved photoelectric performance of AlGaN-based deep ultraviolet luminescence by using dual-triangle quantum barriers // Opt. Commun. 2021. V. 478. P. 126380. https://doi.org/10.1016/j.optcom.2020.126380

4.   Mondal R.K., Chatterjee V., Pal S. AlInGaN-based superlattice p-region for improvement of performance of deep UV LEDs // Opt. Mater. 2020. V. 104. P. 109846. https://doi.org/10.1016/j.optmat.2020.109846

5.   Yang X., Sun H., Fan X., et al. Optimization on the luminous efficiency in AlGaN-based ultraviolet light-emitting diodes by amendment of a superlattice hole reservoir layer // Superlattices Microstruct. 2017. V. 101. P. 293–298. https://doi.org/10.1016/j.spmi.2016.09.048

6.   Peng Z., Guo W., Wu T., et al. Temperature-dependent carrier recombination and efficiency droop of AlGaN deep ultraviolet light-emitting diodes // IEEE Photon. J. 2020. V. 12. № 1. P. 8200108. https://doi.org/10.1109/JPHOT.2019.2958311

7.    Marcinkevicius S., Yapparov R., Kuritzky L.Y., et al. Low-temperature carrier transport across InGaN multiple quantum wells: Evidence of ballistic hole transport // Phys. Rev. B. 2020. V. 101. P. 075305. https://doi.org/10.1103/PhysRevB.101.075305

8.   Arteev D.S., Sakharov A.V., Nikolaev A.E., et al. Temperature-dependent luminescent properties of dual-wavelength InGaN // J. Lumin. 2021. V. 234. P. 117957. https://doi.org/10.1016/j.jlumin.2021.117957

9.   Monti D., Meneghini M., De Santi C., et al. Degradation of UV-A LEDs: Physical origin dependence on stress conditions // IEEE Trans. Device Mater. Reliab. 2016. V. 16. № 2. P. 213–219. https://doi.org/10.1109/TDMR.2016.2558473

10. Tian P., McKendry J.J.D., Herrnsdorf J., et al. Temperature-dependent efficiency droop of blue InGaN micro-light emitting diodes // Appl. Phys. Lett. 2014. V. 105. P. 171107. https://doi.org/10.1063/1.4900865

11.  Павлюченко А.С., Рожанский И.В., Закгейм Д.А. Проявление инжекционного механизма падения эффективности светодиодов на основе AlInGaN в температурной зависимости внешнего квантового выхода // Физика и техника полупроводников. 2009. Т. 43. № 10. С. 1391–1395.

       Pavluchenko A.S., Rozhansky I.V., Zakheim D.A. Manifestation of the injection mechanism of efficiency droop in the temperature dependence of the external quantum efficiency of AlInGaN-based light-emitting diodes // Semicond. 2009. V. 43 № 10. P. 1351–1356. https://doi.org/10.1134/S1063782609100170

12.  Шуберт Ф. Светодиоды / 2-е изд. Перевод с англ. под ред. Юновича А.Э. / M.: Физматлит, 2008. 496 с.

       Schubert F.E. Light-emitting diodes. Cambridge: Cambridge University Press, 2006. 422 p. https://doi.org/10.1017/CBO9780511790546

13.  Zhao F., Jia W., Dong H., et al. Simulation and theoretical study of AlGaN-based deep-ultraviolet light-emitting diodes with a stepped electron barrier layer // AIP Adv. 2022. V. 12. P. 125003. https://doi.org/10.1063/5.0127070

14.  Якубович Б.И. Фундаментальные электрические шумы и неразрушающий контроль электронных приборов // Надежность. 2017. Т. 17. № 2. С. 31–35. https://doi.org/10.21683/1729-2646-2017-17-2-31-35

       Yakubovich B.I. Fundamental electrical noise and non-destructive testing of electronic devices [in Russian] // Nadezhnost’. 2017. V. 17. № 2. P. 31–35.

15.  Šaulys B., Matukas J., Palenskis V., et al. Light-emitting diode degradation and low-frequency noise characteristics // Acta Phys. Pol. A. 2011. V. 119. № 4. P. 514–520. http://dx.doi.org/10.12693/APhysPolA.119.514

16.  Ivanov A.M., Klochkov A.V. Study of characteristics of LEDs based on InGaN/GaN quantum wells under short electric impacts accompanied by joule heating // J. Phys.: Conf. Ser. 2021. V. 2103. P. 012189. https://doi.org/10.1088/1742-6596/2103/1/012189

17.  Бочкарева Н.И., Вороненков В.В., Горбунов Р.И. и др. Туннельная инжекция и энергетическая эффективность светодиодов на основе InGaN/GaN // Физика и техника полупроводников. 2013. Т. 47. № 1. С. 129–136.

       Bochkareva N.I., Voronenkov V.V., Gorbunov R.I., et al. Tunnel injection and power efficiency of InGaN/GaN light-emitting diodes // Semicond. 2013. V. 47. № 1. P. 127–134. https://doi.org/10.1134/S1063782613010089

18. Бочкарева Н.И., Вороненков В.В., Горбунов Р.И. и др. Механизм падения эффективности GaN-светодиодов с ростом тока // Физика и техника полупроводников. 2010. Т. 44. № 6. С. 822–828.

       Bochkareva N.I., Voronenkov V.V., Gorbunov R.I., et al. Mechanism of efficiency droop in GaN light-emitting diodes // Semicond. 2010. V. 44. № 6. P. 794–800. https://doi.org/10.1134/S1063782610060175

19.  Солин Н.И., Наумов С.В. Проводимость в неупорядоченной среде и локализация носителей заряда в слаболегированных манганитах лантана // ФТТ. 2003. Т. 45. № 3. С. 460–467.

       Solin N.I., Naumov S.V. Conductivity in a disordered medium and carrier localization in weakly doped lanthanum manganites // Phys. Solid State. 2003. V. 45. № 3. P. 486–493. https://doi.org/10.1134/1.1562235

20. Maur M., Galler B., Pietzonka I., et al. Trap-assisted tunneling in InGaN/GaN single-quantum-well light-emitting diodes // Appl. Phys. Lett. 2014. V. 105. P. 133504. https://doi.org/10.1063/1.4896970

21.  Karpov S.Yu. ABC-model for interpretation of internal quantum efficiency and its droop in III-nitride LEDs: A review // Opt. Quant. Electron. 2015. V. 47. № 6. P. 1293–1303. https:// doi.org/10.1007/s11082-014-0042-9

22. Lv Q., Gao J., Tao X., et al. Analysis of dominant non-radiative recombination mechanisms in InGaN green LEDs grown on silicon substrates // J. Lumin. 2020. V. 222. P. 117186. https://doi.org/10.1016/j.jlumin.2020.117186

23. Renso N., De Santi C., Caria A., et al. Degradation of InGaN-based LEDs: Demonstration of a recombination-dependent defect-generation process // J. Appl. Phys. 2020. V. 127. P. 185701. https://doi.org/10.1063/1.5135633

24. Hooge F.N. Discussion of recent experiments on 1/f noise // Physica. 1972. V. 60 № 1. P. 130–144. https://doi.org/10.1016/0031-8914(72)90226-1

25. Chernyakov A.E., Levinshtein M.E., Talnishnikh N.A.,et al. Low-frequency noise in diagnostics of power blue InGaN/GaN LEDs // J. Cryst. Growth. 2014. V. 401. P. 302–304. https://doi.org/10.1016/j.jcrysgro.2013.11.097

26. Yassievich I.N. Recombination-induced defect heating and related phenomena // Semicond. Sci. Technol. 1994. V. 9. № 8. P. 1433–1453.

27. Иванов А.М., Клочков А.В. Деградация ультрафиолетовых светодиодов с квантовыми ямами InGaN/GaN, вызванная кратковременными воздействиями током // ЖТФ. 2022. Т. 92. № 2. С. 283–290. https://doi.org/10.21883/JTF.2022.02.52019.229-21

       Ivanov A.M., Klochkov A.V. Degradation of InGaN/GaN quantum well UV LEDs caused by short-term exposure to current // Tech. Phys. 2022. V. 92. № 2. P. 225–231. https://doi.org/10.21883/TP.2022.02.52953.229-21

28. Molnar R.J., Lei T., Moustakas T.D. Electron transport mechanism in gallium nitride // Appl. Phys. Lett. 1993. V. 62. № 1. P. 72–76. https://doi.org/10.1063/1.108823

29. Бочкарева Н.И., Шретер Ю.Г. Локализация носителей заряда в квантовых ямах InGaN/GaN, ограниченная объемным зарядом // ФТТ. 2022. Т. 64. № 3. С. 371–378. https://doi.org/10.21883/FTT.2022.03.52099.241

       Bochkareva N.I., Shreter Y.G. Space-charge-limited carrier localization in InGaN/GaN quantum wells // Phys. Solid State. 2022. V. 64. № 3. P. 371–378. https://doi.org/10.21883/PSS.2022.03.53193.241

30. Bochkareva N.I., Ivanov A.M., Klochkov A.V., et al. Gaussian impurity bands in GaN and weakening of carrier confinement in InGaN/GaN quantum wells // J. Phys.: Conf. Ser. 2020. V. 1697. P. 012203. https://doi.org/10.1088/1742-6596/1697/1/012203