ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-09-64-72

УДК: 520.362, 535.417.22

Development and study of a fiber-optic temperature sensor based on a Fabry–Perot interferometer obtained by welding optical fibers

For Russian citation (Opticheskii Zhurnal):

Коннов Д.А., Казачкова И.Д., Савин В.В., Волошина А.Л., Коннов К.А., Плотников М.Ю., Варжель С.В. Разработка и исследование волоконно-оптического датчика температуры на основе интерферометра Фабри–Перо, полученного методом сварки оптических волокон // Оптический журнал. 2023. Т. 90. № 9. С. 64–72. http://doi.org/10.17586/1023-5086-2023-90-09-64-72

 

Konnov D.A., Kazachkova I.D., Savin V.V., Voloshina A.L., Konnov K.A., Plotnikov M.Y., Varzhel S.V. Development and study of a fiber-optic temperature sensor based on a Fabry–Perot interferometer obtained by welding optical fibers [in Russian] // Opticheskii Zhurnal. 2023. V. 90. № 9. P. 64–72. http://doi.org/10.17586/1023-5086-2023-90-09-64-72

 

For citation (Journal of Optical Technology):
D. A. Konnov, I. D. Kazachkova, V. V. Savin, A. L. Voloshina, K. A. Konnov, M. Y. Plotnikov, and S. V. Varzhel, "Development and studies of a fiber-optic temperature sensor based on a Fabry–Perot interferometer obtained by welding optical fibers," Journal of Optical Technology. 90(9), 528-532 (2023). https://doi.org/10.1364/JOT.90.000528
Abstract:

Subject of study. Fiber-optic temperature sensor based on a Fabry–Perot interferometer obtained by welding optical fibers. Aim of study. Development and study of a temperature sensor based on a fiber-optic Fabry–Perot interferometer obtained by arc welding and its temperature study. Method. The design of the temperature sensor is implemented on the basis of a Fabry–Perot interferometer obtained by welding optical fibers, the reflecting mirrors of which are layers of thin films of titanium dioxide. The interferometer interrogation method is based on the use of a vertically emitting laser operating in the pulsed generation mode. The principle of registering the phase shift between the radiation reflected from the interferometer mirrors with a change in temperature is based on the auxiliary modulation of the laser radiation wavelength due to a periodic change in the pulse duration. Main results. During the temperature study of the developed sensor, the phase characteristics of the Fabry–Perot interferometer were obtained in the temperature range from +20 to +380 °С. A shift of the operating point was registered with a change in the ambient temperature. Based on the results of the experiment, it was concluded that an increase in the ambient temperature leads to an increase in the phase difference between the radiation reflected from the first and second mirrors of the interferometer. It is shown that the phase sensitivity to temperature change is 0.96, 1.68, and 2.35 rad/°C at distances between mirrors of 5, 8, and 11 mm respectively. Practical significance. The proposed fabrication method for the Fabry–Perot interferometer provides ample opportunities for the formation of a resonator with different lengths, and also makes it possible to exclude the use of additional materials in its design. Due to this, the interferometer has small weight and size parameters, which makes it possible to use it in a wide range of applications, including as a sensitive element of a temperature sensor. The sensor interrogation method used in the work makes it possible not to use expensive spectral measuring instruments (optical spectrum analyzers, interrogators).

Keywords:

Fabry–Perot interferometer, temperature sensor, phase sensitivity, phase shift, interferometer sensitivity

OCIS codes: 120.2230, 050.2230

References:

1.    Villatoro J., Finazzi V., Coviello G., et al. Photonic crystal fiber enabled micro Fabry–Perot interferometer // Opt. Lett. 2009. V. 34. № 16. P. 2441–2443. https://doi.org/10.1364/OL.34.002441

2.   Ferreira M.S., Bierlich J., Kobelke J., et al. Towards the control of highly sensitive Fabry–Perot strain sensor based on hollow-core ring photonic crystal fiber // Opt. Exp. 2012. V. 20. № 20. P. 21946–21952. https://doi.org/10.1364/OE.20.021946

3.   Favero F.C., Araujo L., Bouwmans G., et al. Spheroidal Fabry–Perot microcavities in optical fibers for high-sensitivity sensing // Opt. Exp. 2012. V. 20. № 7. P. 7112–7118. https://doi.org/10.1364/OE.20.007112

4.   Wei T., Han Y.K., Tsai H.L., et al. Miniaturized fiber inline Fabry–Perot interferometer fabricated with a femtosecond laser // Opt. Lett. 2008. V. 33. № 6. P. 536–538. https://doi.org/10.1364/OL.33.000536

5.   Duan D.W., Rao Y., Hou Y.-S., et al. Microbubble based fiber-optic Fabry–Perot interferometer formed by fusion splicing single-mode fibers for strain measurement // Appl. Opt. 2012. V. 51. № 8. P. 1033–1036. https://doi.org/10.1364/AO.51.001033

6.   Machavaram V.R., Badcock R.A., Fernando G.F. Fabrication of intrinsic fiber Fabry–Perot sensors in silica fibres using hydrofluoric acid etching // Sens. Actuator A Phys. 2007. V. 138. № 1. P. 248–260. https://doi.org/10.1016/j.sna.2007.04.007

7.    Liu S., Wang Y., Liao C., et al. High-sensitivity strain sensor based on in-fiber improved Fabry–Perot interferometer // Opt. Lett. 2014. V. 39. № 7. P. 2121–2124. https://doi.org/10.1364/OL.39.002121

8.   Egorova O.N., Semjonov S.L., Medvedkov O.I., et al. High-beam quality, high-efficiency laser based on fiber with heavily Yb3+-doped phosphate core and silica cladding // Opt. Lett. 2015. V. 40. № 16. P. 3762–3765. https://doi.org/10.1364/OL.40.003762

9.   Zhang Q., Fan Z., Zhang J., et al. Ultrashort all-fiber Fabry–Perot interferometer fabricated by a CO2 laser // Appl. Opt. 2020. V. 59. № 28. P. 8959–8963. https://doi.org/10.1364/AO.402999

10. Wang B., Niu Y., Zheng S., et al. A high temperature sensor based on sapphire fiber Fabry–Perot interferometer // IEEE Photon. Technol. Lett. 2020. V. 32. № 2. P. 89–92. https://doi.org/10.1109/LPT.2019.2957917

11.  Shangguan C., Dong M., Lu L. All-fiber temperature sensor based on Fabry–Perot interferometer // Appl. Optics and Photonics. Conf. Optical Sensing and Imaging Technology. Beijing, China. July 23–25, 2021.

12.  Egorova O.N., Vasil’ev S.A., Likhachev I.G., et al. A Fabry–Perot interferometer formed in the core of a composite optical fiber heavily doped with phosphorus oxide // Quantum Elec. (Woodbury). 2019. V. 49. № 12. P. 1140–1144. https://doi.org/10.1070/QEL17133

13.  Tertyshnik A.D., Volkov P.V., Goryunov A.V., et al. Fiber-optic interference temperature sensor // Patent RU № 2466366C1. 2012. Bul. № 31.

14.  Moor Ia.D., Konnov K.A., Plotnikov M.Yu, et al. High-precision fiber-optic temperature sensor based on Fabry–Perot interferometer with reflective thin-film multilayer structures [in Russian] // Sci. Tech. J. Inf. Technol. Mech. Opt. 2022. V. 22. № 3. P. 442–449. https://doi.org/10.17586/2226-1494-2022-22-3-442-449

15.       Plotnikov M.Yu. Fiber-optic hydrophone [in Russian] // Phd thesis. ITMO University, St. Petersburg. 2014. 155 p.