DOI: 10.17586/1023-5086-2023-90-09-73-81
УДК: 535
Low-noise suppression algorithm based on single-shot for laser complex amplitude measurements
Full text on elibrary.ru
Publication in Journal of Optical Technology
Jing W., Wu X., Shen W., Feng X., Zhao Z. Low-noise suppression algorithm based on single-shot for laser complex amplitude measurements [in English] // Opticheskii Zhurnal. 2023. V. 90. № 9. P. 73–81. http://doi.org/10.17586/1023-5086-2023-90-09-73-81
Jing W., Wu X., Shen W., Feng X., Zhao Z. Low-noise suppression algorithm based on single-shot for laser complex amplitude measurements [in English] // Opticheskii Zhurnal. 2023. V. 90. № 9. P. 73–81. http://doi.org/10.17586/1023-5086-2023-90-09-73-81
Subject of study. Low-noise suppression algorithm based on single-shot is proposed for laser complex amplitude measurements. The purpose of the work is improvement of the well-known algorithm for measuring the complex amplitude of the field based on the determination of the phase difference. Method. The approach relies on a synchronization images acquisition system containing two CCD[1]s, while optimizing the objective function, combining the angular spectrum method and a nonlinear optimization algorithm. Main results. The synchronization images acquisition system captures the laser synchronously along the optical axis, obtaining two laser intensity images at different cross-sectional positions. The effect of low noise is suppressed by optimizing the objective function using iterative parameters consisting of a, b, and c. In combination with the angular spectrum method and using the nonlinear optimization algorithm, the complex amplitude of the laser is retrieved from the intensity image. Additionally, extensive simulative experiments have been carried out to verify the efficiency and high accuracy of this algorithm. Practical significance. The proposed single-shot-based low-noise suppression algorithm for laser complex amplitude measurements can achieve comparable measurement accuracy both simply and quickly under low-noise conditions.
laser complex amplitude, low-noise suppression, single-shot, objective function, iterative parameters
Acknowledgements:this work was supported by Ministry of Science and Technology of the People's Republic of China (2018YFB1107600) and Jilin Scientific and Technological Development Program (20160204009GX, 20170204014GX, 20200401066GX). This work was also supported by the 111 Project of China (D21009)
OCIS codes: 140.0140, 120.5050, 070.0070
References:1. Smith C.S., Marinică R., den Dekker A.J., et al. Iterative linear focal-plane wavefront correction // JOSA A. 2013. V. 30(10) P. 2002. https://doi.org/10.1364/JOSAA.30.002002
2. Montrésor S., Memmolo P., Bianco V., et al. Comparative study of multi-look processing for phase map de-noising in digital Fresnel holographic interferometry // JOSA A. 2019. V. 36(2). P. A59. https://doi.org/10.1364/JOSAA.36.000A59
3. Matsushima K. Shifted angular spectrum method for off-axis numerical propagation // Opt. Exp. 2010. V. 18(17). P. 1845. http://dx.doi.org/10.1364/OE.18.018453
4. Meynadier L., Michau V., Velluet M.-T., et al. Noise propagation in wave-front sensing with phase diversity // Appl. Opt. 1999. V. 38(23). P. 4967. http://dx.doi.org/10.1364/AO.38.004967
5. Cheng Q., Li F., Tao X., et al. Wavefront error sensing based on phase diversity technology and image restoration // 6th Int. Symp. Adv. Opt. Manuf. Test. Technol. Opt. Test Meas. Technol. Equip. 2012. V. 8417(1). P. 84170R. http://dx.doi.org/10.1117/12.970394
6. Ehsan L. An adaptive fuzzy filter for Gaussian noise reduction using image histogram estimation // Adv. Digit. Multimed. 2013. V. 1(4). P. 190–193.
7. Farriss W.E., Malhotra T., Vamivakas N.N., et al. Phase retrieval in generalized two-path interferometry // Opt. InfoBase Conf. Pap. 2016. V. 26(3). P. 2758–2769. https://doi.org/10.1364/COSI.2016.CT4C.3
8. Jurling A.S. and Fienup J.R. Extended capture range for focus-diverse phase retrieval in segmented aperture systems using geometrical optics // JOSA A. 2014. V. 31(3). P. 661. https://doi.org/10.1364/JOSAA.31.000661
9. Misell D.L. An examination of an iterative method for the solution of the phase problem in optics and electron optics: I. Test calculations // J. Phys. D. Appl. Phys. 1973. V. 6(18). P. 305. http://dx.doi.org/10.1088/0022-3727/6/18/305
10. Gonsalves R.A. Phase retrieval and diversity in adaptive optics // Opt. Eng. 1982. V. 21(5). P. 19–22. https://doi.org/10.1117/12.7972989
11. Mugnier L.M., Blanc A., and Idier J. Phase diversity: A technique for wave-front sensing and for diffraction-limited imaging // Adv. Imaging Electron Phys. 2006. V. 141(05). P. 1–76. https://doi.org/10.1016/S1076-5670%2805%2941001-0
12. Guo C., Tan J., and Liu Z. Precision influence of a phase retrieval algorithm in fractional Fourier domains from position measurement error // Appl. Opt. 2015. V. 54(22). P. 6940. https://doi.org/10.1364/AO.54.006940
13. Shen C., Bao X., Tan J., et al. Two noise-robust axial scanning multi-image phase retrieval algorithms based on Pauta criterion and smoothness constraint // Opt. Exp. 2017. V. 25(14). P. 16235. https://doi.org/10.1364/OE.25.016235
14. Guo C., Li Q., Wei C., et al. Axial multi-image phase retrieval under tilt illumination // Sci. Report. 2017. V. 7(1). P. 1–8. 10.1038/s41598-017-08045-3.
15. Fourmaux S., Payeur S., Alexandrov A., et al. Laser beam wavefront correction for ultra high intensities with the 200 TW laser system at the advanced laser light source // Opt. Exp. 2008. V. 16(16). P. 11987. http://dx.doi.org/10.1364/OE.16.011987
16. Jefferies S.M., Lloyd-Hart M., Hege E.K., et al. Sensing wave-front amplitude and phase with phase diversity // Appl. Opt. 2002. V. 41(11). P. 2095. https://doi.org/10.1364/AO.41.002095
17. Almoro P., Pedrini G., and Osten W. Complete wavefront reconstruction using sequential intensity measurements of a volume speckle field // Appl. Opt. 2006. V. 45(34). P. 8596–8605. https://doi.org/10.1364/AO.45.008596
18. Stark H. Image recovery: Theory and applications. Orlando, Fla: Acad. Press, 1987. 543 p. https://doi.org/10.1016/0022-2364%2889%2990311-9
19. Agour M., Almoro P.F., and Falldorf C. Investigation of smooth wave fronts using SLM-based phase retrieval and a phase diffuser // J. Eur. Opt. Soc. 2012. V. 7. P. 12046. http://dx.doi.org/10.2971/jeos.2012.12046
20. Thurman S.T. and Fienup J.R. Complex pupil retrieval with undersampled data // JOSA A. 2009. V. 26(12). P. 2640–2647. https://doi.org/10.1364/JOSAA.26.002640
21. Védrenne N., Mugnier L.M., Michau V., et al. Laser beam complex amplitude measurement by phase diversity // Opt. Exp. 2014. V. 22(4). P. 4575–4589. https://doi.org/10.1364/OE.22.004575
22. Pan S., Ma J., Zhu R., et al. Real-time complex amplitude reconstruction method for beam quality M2 factor measurement // Opt. Exp. 2017. V. 25(17). P. 20142–20155. https://doi.org/10.1364/OE.25.020142
23. Aisher P.L., Crass J., and Mackay C. Wavefront phase retrieval with non-linear curvature sensors // Mon. Not. R. Astron. Soc. 2013. V. 429(3). P. 2019–2031. http://dx.doi.org/10.1093/mnras/sts472