ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2024-91-01-3-13

УДК: 535.3

Synthesis and optical properties of hybrid nanostructures based on plasmonic silver nanoparticles and InGaN nanowires

For Russian citation (Opticheskii Zhurnal):

Шугабаев Т., Гридчин В.О., Мельниченко И.А., Лендяшова В.В., Новикова К.Н., Котляр К.П., Кулагина А.С., Крыжановская Н.В., Цырлин Г.Э. Синтез и оптические свойства гибридных наноструктур на основе плазмонных наночастиц серебра и нитевидных нанокристаллов InGaN // Оптический журнал. 2024. Т. 91. № 1. С. 3–13. http://doi.org/10.17586/1023-5086-2024-91-01-3-13

 

Shugabaev T., Gridchin V.O., Melnichenko I.A., Lendyashova V.V., Novikova K.N., Kotlyar K.P., Kulagina A.S., Kryzhanovskaya N.V., Cirlin G.E. Synthesis and optical properties of hybrid nanostructures based on plasmonic silver nanoparticles and InGaN nanowires [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 1. P. 3–13. http://doi.org/10.17586/1023-5086-2024-91-01-3-13

For citation (Journal of Optical Technology):

Talgat Shugabaev, Vladislav O. Gridchin, Ivan A. Melnichenko, Vera V. Lendyashova, Kristina N. Novikova, Konstantin P. Kotlyar, Anastasia S. Kulagina, Natalya V. Kryzhanovskaya, and George E. Cirlin, "Synthesis and optical properties of hybrid nanostructures based on plasmonic silver nanoparticles and InGaN nanowires," Journal of Optical Technology. 91(1), 1-6 (2024). https://doi.org/10.1364/JOT.91.000001

Abstract:

Subject of study.  Integration of indium gallium nitride InGaN nanowires with silver nanoparticles and study of the photoluminescent properties of the resulting hybrid nanostructures. Aim of study. Improving the luminescent characteristics of InGaN nanowires by decorating their surface with colloidal silver nanoparticles. Method. The synthesis of various sizes silver nanoparticles and nanoparticles with a silver/silicon oxide core/shell structure was carried out by colloidal chemistry. Indium gallium nitride nanowires were obtained by molecular beam epitaxy technology. The morphology and dimensions of the obtained samples were studied using scanning electron microscopy. The optical properties were characterized by spectral methods. Main results. A red shift in the wavelength of localized plasmon resonance of nanoparticles was demonstrated with increasing diameter and passivation of the nanoparticle surface by a silicon oxide shell. Nanowires with a spontaneously formed InGaN/GaN core-shell structure exhibiting photoluminescence at room temperature in the yellow-orange region were synthesized. It was shown for the first time that the deposition of colloidal silver/silicon oxide nanoparticles onto the surface of InGaN nanowires leads to an increase in the PL intensity of the initial structures by a factor of 2,2. Practical significance. InGaN nanowires are promising solid-state nanostructures for creating visible light-emitting devices integrated with a silicon platform. The creation of hybrid nanostructures based on InGaN nanowires and silver nanoparticles is one of the methods for increasing the luminescence efficiency of the original nanowires. In particular, the hybrid nanostructure proposed in this work can be used to create optically pumped subwavelength lasers based on InGaN nanowires.

Keywords:

nanowires, indium gallium nitride, silver nanoparticles, hybrid nanostructures, plasmonics, increase in photoluminescence intensity

Acknowledgements:

the work on the growth of structures was carried out with the support of the Ministry of Science and Higher Education in part of State Assignment № 0791-2023-0004. Studies of the structural properties of the samples were carried out with the financial support of the St. Petersburg State University within the framework of research grant № 94033852. The synthesis of NPs and modeling were carried out with the financial support of the Ministry of Science and Higher Education of the Russian Federation (project 075-15-2021-1349). Studies of optical properties were carried out within the framework of the Fundamental Research Program of the HSE University.

OCIS codes: 160.4236, 160.2540, 160.4760

References:

1. Дубровский В.Г., Цырлин Г.Э., Устинов В.М. Полупроводниковые нитевидные нанокристаллы: синтез, свойства, применения. Обзор // Физика и техника полупроводников. 2009. Т. 43. № 12. С. 1585–1628.

 Dubrovskii V.G., Cirlin G.E., Ustinov V.M. Semiconductor nanowhiskers: Synthesis, properties, and applications // Semiconductors. 2009. V. 43. № 12. Р. 1539–1584. http://dx.doi.org/10.1134/S106378260912001X

2. Gridchin V.O., Kotlyar K.P., Reznik R.R., et al. Multi-colour light emission from InGaN nanowires monolithically grown on Si substrate by MBE // Nanotechnology. 2021. V. 32. № 33. P. 335604. https://doi.org/10.1088/1361-6528/ac0027

3. Pan X., Hong H., Deng R., et al. In desorption in InGaN nanowire growth on Si generates a unique light emitter: From In-rich InGaN to the intermediate core-shell InGaN to pure GaN // Cryst. Growth Des. 2023. V. 23. № 33 P. 6130–6135. https://doi.org/10.1021/acs.cgd.3c00622

4. Liu W., Li Z., Jia H., et al. Shell surface sulfidation mediated the plasmonic response of Au@Ag NPs for colorimetric sensing of sulfide ions and sulfur // Appl. Surf. Sci. 2019. V. 481. P. 678–683. https://doi.org/10.1016/j.apsusc.2019.03.175

5. Pan Z., Yang J., Song W., et al. Au@Ag nanoparticle sensor for sensitive and rapid detection of glucose // New J. Chem. 2021. V. 45. № 6. P. 3059–3066. https://doi.org/10.1039/D0NJ04489J

6. Guo Y., Li D., Zheng S., et al. Utilizing Ag–Au core-satellite structures for colorimetric and surfaceenhanced Raman scattering dual-sensing of Cu (II) // Biosens. Bioelectron. 2020. V. 159. P. 112192. https://doi.org/10.1016/j.bios.2020.112192

7. Husen A. Medicinal plant-product based fabrication nanoparticles (Au and Ag) and their anticancer effect. Plants that fight Cancer, 2nd edn. Taylor & Francis/CRC Press, 2019. P. 133–147.

8. Kalaivani R., Maruthupandy M., Muneeswaran T., et al. Synthesis of chitosan mediated silver nanoparticles (Ag NPs) for potential antimicrobial applications // Frontiers in Laboratory Medicine. 2018. V. 2. № 1. P. 30–35. https://doi.org/10.1016/j.flm.2018.04.002

9. Jia C., Li X., Xin N., et al. Interface-engineered plasmonics in metal/semiconductor heterostructures // Adv. Energy Mater. 2016. V. 6. № 17. P. 1600431. https://doi.org/10.1002/aenm.201600431

10. Pescaglini A., Iacopino D. Metal nanoparticle-semiconductor nanowire hybrid nanostructures for plasmon-enhanced optoelectronics and sensing // J. Mater. Chem. C. 2015. V. 3. № 45. P. 11785–11800. https://doi.org/10.1039/C5TC01820J

11. Gu X., Qiu T., Zhang W., et al. Light-emitting diodes enhanced by localized surface plasmon resonance // Nanoscale Res. Lett. 2011. V. 6. P. 1–12. https://doi.org/10.1186/1556-276X-6-199

12. Chen R., Li D., Hu H., et al. Tailoring optical properties of silicon nanowires by Au nanostructure decorations: Enhanced Raman scattering and photodetection // J. Mater. Chem. C. 2012. V. 116. № 7. P. 4416–4422. https://doi.org/10.1021/jp210198u

13. Shin D.Y., Kim T., Akyuz O., et al. Ag@SiO2-embedded InGaN/GaN nanorod array white light-emitting diode with perovskite nanocrystal films // J. Alloys Compd. 2022. V. 898. P. 162974. https://doi.org/10.1016/j.jallcom.2021.162974

14. Li H., Xia H., Wang D., et al. Simple synthesis of monodisperse, quasi-spherical, citrate-stabilized silver nanocrystals in water // Langmuir. 2013. V. 29. № 16. P. 5074–5079. https://doi.org/10.1021/la400214x

15. Матюшкин Л.Б., Перцова А., Мошников В.А. Усиление люминесценции квантовых точек вблизи слоя наночастиц Ag/SiO2 // Письма в ЖТФ. 2018. Т. 44. № 8. С. 35–41. https://doi.org/10.21883/PJTF.2018.08.45964.17142

 Matyushkin L.B., Pertsova A., Moshnikov V.A. Enhanced luminescence of quantum dots near a layer of Ag/SiO2 nanoparticles // Tech. Phys. Lett. 2018. V. 44. P. 331–333. https://doi.org/10.1134/S1063785018040211

16. Mine E., Yamada A., Kobayashi Y., et al. Direct coating of gold nanoparticles with silica by a seeded polymerization technique // J. Colloid Interface Sci. 2003. V. 264. № 2. P. 385–390. https://doi.org/10.1016/S0021-9797(03)00422-3

17. Сошников И.П., Котляр К.П., Резник Р.Р. и др. Особенности структурных напряжений в нитевидных нанокристаллах InGaN/GaN // Физика и техника полупроводников. 2021. Т. 55. № 9. С. 785–788. https://doi.org/10.21883/FTP.2021.09.51295.25

 Soshnikov I.P., Kotlyar K.P., Reznik R.R., et al. Specific features of structural stresses in InGaN/GaN nanowires // Semiconductors. 2021. V. 55. № 10. P. 795–798. https://doi.org/10.1134/S1063782621090207

18. García M.A. Surface plasmons in metallic nanoparticles: Fundamentals and applications // J. Phys. D. 2011. V. 44. № 28. P. 283001. https://doi.org/10.1088/0022-3727/44/28/283001

19. Johnson P.B., Christy R.W. Optical constants of the noble metals // Phys. Rev. B. 1972. V. 6. P. 4370.

20. Malitson I.H. Interspecimen comparison of the refractive index of fused silica // JOSA. 1965. V. 55. № 10. P. 1205–1209. https://doi.org/10.1364/JOSA.55.001205

21. Hohenester U. Nano and quantum optics. Berlin: Springer, 2020. 665 p.