DOI: 10.17586/1023-5086-2024-91-01-33-38
УДК: 535-15; 537.862
The minimum number of stages in a terahertz GaAs/AlGaAs quantum-cascade laser with a waveguide of metal-to-metal
Full text on elibrary.ru
Publication in Journal of Optical Technology
Дубинов А.А. Минимальное число каскадов в терагерцовом квантово-каскадном лазере на основе GaAs/AlGaAs с волноводом металл-металл // Оптический журнал. 2024. Т. 91. № 1. С. 33–38. http://doi.org/10.17586/1023-5086-2024-91-01-33-38
Dubinov A.A. The minimum number of stages in a terahertz GaAs/AlGaAs quantum-cascade laser with a waveguide of metal-to-metal [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 1. P. 33–38. http://doi.org/10.17586/1023-5086-2024-91-01-33-38
Alexander A. Dubinov, "Minimum number of stages in a GaAs/AlGaAs terahertz quantum cascade laser with a metal-to-metal waveguide," Journal of Optical Technology. 91(1),19-22 (2024). https://doi.org/10.1364/JOT.91.000019
Subject of study. Absorption coefficient of a metal-to-metal waveguide of a terahertz quantum cascade laser based on heterostructures GaAs/AlGaAs. Aim of study. Theoretical study of the possibility of significantly reducing the number of cascades (thickness of the active region) in terahertz quantum cascade lasers based on two previously implemented cascade designs with GaAs/AlGaAs heterostructures with significant gains and a metal-to-metal waveguide. Method. The absorption coefficient of the metal-to-metal waveguide was calculated numerically by the method of transfer matrices from Maxwell's equations. Main results. The cascade number dependence of the absorption coefficient of a metal-metal waveguide of a terahertz quantum-cascade laser is determined. Only 5 stages are sufficient for generation with a total waveguide thickness of 428 nm for a laser with a gain of 200 cm–1 at a temperature of 100 K. Practical significance. Calculations show that it is possible to significantly reduce the active region thickness and the number of stages in a terahertz quantum-cascade laser, which should facilitate the simplification of its creation and wider use.
absorption coefficient, quantum-cascade laser, active region thickness
Acknowledgements:the work was supported by the Russian Science Foundation, grant № 23-19-00436.
OCIS codes: 140.3070, 140.5965, 140.3410
References:1. Wen B., Ban D. High-temperature terahertz quantum cascade lasers // Progress in Quantum Electronics. 2021. V. 80. P. 100363. https://doi.org/10.1016/j.pquantelec.2021.100363
2. Leitenstorfer A., Moskalenko A. S., Kampfrath T., et al. The 2023 terahertz science and technology roadmap // J. Phys. D: Appl. Phys. 2023. V. 56. P. 223001. https://doi.org/10.1088/1361-6463/acbe4c
3. Vaks V.L., Domracheva E.G., Chernyaeva M.B., et al. Application of a high-resolution terahertz gas spectroscopy method to compositional analysis of thermal decomposition products of human fluids (urine) // Journal of Optical Technology. 2022. V. 89. № 4. P. 243–249. https://doi.org/10.1364/JOT.89.000243
4. Liu J. and Yang S. Research on the terahertz temperature correlation of L-asparagine and L-tyrosine // Journal of Optical Technology. 2021. V. 88. № 3. P. 121–126. https://doi.org/10.1364/JOT.88.000121
5. Bosco L., Franckie M., Scalari G., et al. Thermoelectrically cooled THz quantum cascade laser operating up to 210 K // Appl. Phys. Lett. 2019. V. 115. P. 010601. https://doi.org/10.1063/1.5110305
6. Khalatpour A., Paulsen A.K., Deimert C. , et al. High-power portable terahertz laser systems // Nature Photonics. 2021. V. 15. P. 16–20. https://doi.org/10.1038/s41566-020-00707-5
7. Yachmenev A.E., Pushkarev S.S., Reznik R.R., et al. Arsenides-and related III-V materials-based multilayered structures for terahertz applications: Various designs and growth technology // Progress in Crystal Growth and Characterization of Materials. 2020. V. 66. № 2. P. 100485. https://doi.org/10.1016/j.pcrysgrow.2020.100485
8. Strupiechonski E., Grassani D., Fowler D., et al. Vertical subwavelength mode confinement in terahertz and mid-infrared quantum cascade lasers // Appl. Phys. Lett. 2011. V. 98. P. 101101. https://doi.org/10.1063/1.3560980
9. Curwen C.A., Addamane S.J., Reno J.L., et al. Thin THz QCL active regions for improved continuous-wave operating temperature // AIP Advances. 2021. V. 11. Р. 125018. https://doi.org/10.1063/5.0071953
10. Chassagneux Y., Wang Q. J., Khanna S. P., et al. Limiting factors to the temperature performance of THz quantum cascade lasers based on the resonant-phonon depopulation scheme // IEEE Trans. Terahertz Sci. and Technol. 2012. V. 2. № 1. P. 83–92. https://doi.org/10.1109/TTHZ.2011.2177176
11. Dubinov A. A., Ushakov D. V., Afonenko A.A., et al. Thin active region HgCdTe-based quantum cascade laser with quasi-relativistic dispersion law // Opt. Lett. 2022. V. 47. № 19. P. 5048–5051. https://doi.org/10.1364/OL.470688
12. Dubinov A.A., Aleshkin V.Ya. Model of a terahertz quantum-cascade laser based on two-dimensional plasmons // Semiconductors. 2021. V. 55. № 11. P. 828–830. https://doi.org/10.1134/S1063782621100092
13. Amanti M.I., Scalari G., Terazzi R., et al. Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage // New J. Phys. 2009. V. 11. P. 125022. https://doi.org/10.1088/1367-2630/11/12/125022
14. Casey H.C., Panich M.B. Heterostructure lasers. Part A. N.Y.: Academic Press, 1978. 286 p.
15. Kohen S., Williams B.S., Hu Q. Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators // J. Appl. Phys. 2005. V. 97. P. 053106. https://doi.org/10.1063/1.1855394
16. Katsidis C.C., Hatzopoulos Z., Pelekanos N.T. Optical properties of AlxGa1–xAs/GaAs heterostructures in the far-infrared // Book of Abstracts of XXIV Panhellenic Conf. Solid State Physics and Materials Science. Heraklion, Crete, Greece. September 21–24, 2008. P. 205–206. https://doi.org/10.13140/RG.2.1.1279.9207
17. Ushakov D.V., Afonenko A.A., Dubinov A.A., et al. Mode loss spectra in THz quantum-cascade lasers with gold- and silver-based double metal waveguides // Quantum Electronics. 2018. V. 48. № 11. P. 1005–1008. https://doi.org/10.1070/QEL16806
18. Wen B., Ban D. Theoretical study of quasi one-well terahertz quantum cascade laser // Photonics. 2022. V. 9. P. 247. https://doi.org/10.3390/photonics9040247
19. Rindert V., Önder E., Wacker A. Analysis of high-performing terahertz quantum cascade lasers // Phys. Rev. Appl. 2022. V. 18. P. L041001. https://doi.org/10.1103/PhysRevApplied.18.L041001