ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2024-91-01-39-48

УДК: 535.343.4+543.421/.422

Terahertz nonstationary high resolution spectroscopy: State of art and trends of development

For Russian citation (Opticheskii Zhurnal):

Вакс В.Л., Домрачева Е.Г., Черняева М.Б., Анфертьев В.А., Яблоков А.А. Терагерцовая нестационарная спектроскопия высокого разрешения: современное состояние и направления развития // Оптический журнал. 2024. Т. 91. № 1 . С. 39–48. http://doi.org/10.17586/1023-5086-2024-91-01-39-48

 

Vaks V.L., Domracheva E.G., Chernyaeva M.B., Anfertev V.A., Yablokov A.A. Terahertz nonstationary high resolution spectroscopy: State of art and trends of development [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 1. P. 39–48. http://doi.org/10.17586/1023-5086-2024-91-01-39-48

For citation (Journal of Optical Technology):

Vladimir L. Vaks, Elena G. Domracheva, Mariya B. Chernyaeva, Vladimir A. Anfertev, and Anton A. Yablokov, "Terahertz nonstationary high-resolution spectroscopy: state-of-the-art and trends of development," Journal of Optical Technology. 91(1), 23-28 (2024). https://doi.org/10.1364/JOT.91.000023

Abstract:

Subject of study. The chemical composition of multicomponent gas mixtures of biological origin. Aim of study. Compiling the metabolic profiles of diseases at the examples of studying the biological samples (ear-nose-throat organs tissues, urina) with high resolution terahertz spectroscopy. Method. A spectroscopy based on nonstationary effects such as inducing and decaying the free dumping polarization in a gas sample at interaction of radiation and gas molecules is a highly sensitive method of investigation the multicomponent gas mixtures. The spectrometer based on their principles operates in the modes with phase switching or fast sweeping of the probing radiation. Main results. Some experimental results of using the high resolution terahertz spectroscopy for solving the problems of medical diagnostics and the control of treatment carried out are presented in this paper. The multicomponent gas mixtures such as vapors or thermal decomposition products of various samples (biological liquids (urine) and pathological tissues of living organism) were studied using the THz nonstationary spectrometers for developing the diagnostic methods. The results of experimental data analysis allow to reveal the substances-markers for specified diseases of living organism (diabetes, pathology tissues of ear-nose-throat organs) or substances appearing at therapeutical treatment (nephrotoxical influence of chemotherapy). Practical significance. Terahertz nonstationary high resolution spectroscopy can be considered as a prospective analytical method of spectral analysis for fundamental and applied research.

Keywords:

terahertz nonstationary high resolution spectroscopy, phase switching the probing radiation, fast sweeping of the frequency of probing radiation, multicomponent gas mixture, pathology tissues of ear-nose-throat organs

Acknowledgements:

the elaboration of high resolution spectrometer with fast frequency sweep, as well as study of pathology tissues of ear-nose-throat organs was funded by the Russian Science Foundation, grant № 21-19-00357, study of biological liquids for revealing disease markers was funded by the Government Statement of work for IPM RAS FFUF -2021-0024.

OCIS codes: 300.6495, 300.1030, 300.6320

References:

Agranat M.B., Il'ina I.V., Sitnikov D.S. Application of terahertz spectroscopy for remote express analysis of gases // High Temperature. 2017. V. 55. № 6. P. 922–934. https://doi.org/10.1134/S0018151X17060013

2.   Rothbart N., Stanley V., Koczulla R., et al. Millimeter-wave gas spectroscopy for breath analysis of COPD patients in comparison to GC-MS // J. Breath Res. 2022. V. 16. P. 046001. https://doi.org/10.1088/1752-7163/ac77aa

3.   Laser and coherence spectroscopy / Ed. by Steinfeld J.I. N.Y. and London: Plenum Press, 1978. 529 p.

4.   Kisiel Z. Assignment and analysis of complex rotational spectra / Spectroscopy from Space / Ed. by Demaison J. Dordrecht: Kluwer Academic Publ., 2001. P. 91–106. http://info.ifpan.edu.pl/~kisiel/pdfs/prospe_preprint.pdf

5.   Pickett H.M., Cohen E.A., Drouin B.J., et al. Submillimeter, millimeter, and microwave spectral line catalog / JPL Molecular Spectroscopy / California Institute of Technology [electronic resource]. Access mode: http://spec.jpl.nasa.gov/ftp/pub/catalog/catform.html, free. Language English (access date 03/20/2023)

6.   Endres C.P., Schlemmer S., Schilke P., Stutzki J., Müller H.S.P. The cologne database for molecular spectroscopy, CDMS / in the Virtual Atomic and Molecular Data Centre, VAMDC // J. Mol. Spectrosc. 2016. V. 327. P. 95–104. https://cdms.astro.uni-koeln.de/cgi-bin/cdmssearch

7.    Ekkers J., Flygare W.H. Pulsed microwave Fourier transform spectrometer // Rev. Scientific Instruments. 1976. V. 47. P. 448. https://doi.org/10.1063/1.1134647

8.   Grabow J.U. Fourier transform microwave spectroscopy measurement and instrumentation / Handbook of high resolution spectroscopy. John Wiley & Sons, Ltd, 2011. https://doi.org/10.1002/9780470749593.hrs037

9.   Vaks V., Anfertev V., Balakirev V., et al. High resolution terahertz spectroscopy for analytical applications // Phys. Usp. 2020. V. 63. P. 708–720. https://doi.org/10.3367/UFNr.2019.07.038613

10. Steber A.L., Harris B.J., Neill J.L., et al. An arbitrary waveform generator based chirped pulse Fourier transform spectrometer operating from 260 to 295 GHz // J. Molecular Spectrosc. 2012. V. 280. P. 3–10. https://doi.org/10.1016/j.jms.2012.07.015

11.  Hindle F., Bray C., Hickson K., et al. Chirped pulse spectrometer operating at 200 GHz // J. Infrared Milli Terahz Waves. 2018. V. 39 P. 105–119 https://doi.org/10.1007/s10762-017-0445-3

12.  Rothbart N., Schmalz K., Hübers H.-W. A portable terahertz/millimeter-wave spectrometer based on SiGe BiCMOS technology for gas sensing applications // 2020 45th Internat. Conf. Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). Buffalo, N.Y., USA. November 08–13, 2020. P. 1–2. https://doi.org/10.1109/IRMMW-THz46771.2020.9370917

13.  Röben B., Lü X., Biermann K., et al. Terahertz quantum-cascade lasers for high-resolution spectroscopy of sharp absorption lines // J. Appl. Phys. 2019. V. 125. P. 151613. https://doi.org/10.1063/1.5079701

14.  Williams B. Terahertz quantum-cascade lasers // Nature Photon. 2007. V. 1. P. 517–525. https://doi.org/10.1038/nphoton.2007.166

15.  Wienold M., Röben B., Lü X., et al. Frequency dependence of the maximum operating temperature for quantum-cascade lasers up to 5.4 THz // Appl. Phys. Lett. 2015. V. 107. P. 202101. https://doi.org/10.1063/1.4935942

16.  Rothbart N., Holz O., Koczulla R., et al. Analysis of human breath by millimeter-wave/terahertz spectroscopy // Sensors. 2019. V. 19. № 12. P. 2719. https://doi.org/10.3390/s19122719

17.  Vaks V., Anfertev V., Chernyaeva M., et al. Sensing nitriles with THz spectroscopy of urine vapours from cancers patients subject to chemotherapy // Sci. Rep. 2022. V. 12. P. 18117. https://doi.org/10.1038/s41598-022-22783-z

18.       Vaks V., Anfertev V., Ayzenshtadt A., et al. Novel approaches in the diagnostics of ear-nose-throat diseases using high-resolution THz spectroscopy // Appl. Sci. 2023. V. 13. P. 1573. https://doi.org/10.3390/app13031573