DOI: 10.17586/1023-5086-2024-91-01-80-90
УДК: 621.372.8
High-order modes suppression in an integrated optical thin-film lithium niobate phase modulator
Full text on elibrary.ru
Publication in Journal of Optical Technology
Парфенов М.В., Тронев А.В., Агрузов П.М., Ильичев И.В., Варламов А.В., Усикова А.А., Задиранов Ю.М., Шамрай А.В. Подавление высших мод в интегрально-оптическом фазовом модуляторе на основе тонкопленочного ниобата лития // Оптический журнал. 2024. Т. 91. № 1. С. 80–90. http://doi.org/10.17586/1023-5086-2024-91-01-80-90
Parfenov M.V., Tronev A.V., Agruzov P.M., Ilichev I.V., Varlamov A.V., Usikova A.A., Zadiranov Y.M., Shamrai A.V. High-order modes suppression in an integrated optical thin-film lithium niobate phase modulator [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 1. P. 80–90. https://doi.org/10.17586/1023-5086-2024-91-01-80-90
Mikhail V. Parfenov, Aleksandr V. Tronev, Petr M. Agruzov, Igor V. Ilichev, Andrei V. Varlamov, Anna A. Usikova, Yurii M. Zadiranov, and Aleksandr V. Shamrai, "High-order mode suppression in an integrated optical thin-film lithium niobate phase modulator," Journal of Optical Technology. 91(1), 48-54 (2024). https://doi.org/10.1364/JOT.91.000048
Subjects of study are differential modal damping and filtering of fundamental mode in channel optical waveguides fabricated through etching of lithium niobate thin film on silicon dioxide buffer layer. Aims of study are development of a method for high-order modes suppression in multimode channel waveguides based on thin-film lithium niobate and determination of the topology of a highly efficient integrated optical phase modulator based on thin-film lithium niobate, fabricated using contact photolithography. Method. Numerical simulation and experimental investigation of optical and electro-optical properties of an integrated optical modulator. Main results. For an integrated optical phase modulator based on a channel waveguide produced by etching thin-film lithium niobate, the influence of planar electrodes on the differential damping of high-order modes is analyzed, and the conditions for the quasi-single-mode light propagation are determined. The topology of an integrated optical phase modulator is proposed, for which the effective suppression of high-order modes and the high efficiency of electro-optical modulation are experimentally demonstrated. The achieved parameter of modulation efficiency UpL ≈ 4 V cm is 4 times less than that of commercially available integrated optical phase modulators based on bulk lithium niobate. Practical significance. Approaches to solving the problem of fast and inexpensive production of integrated optical modulators based on thin-film lithium niobate using mass-available standard contact photolithography, which has significant limitations in resolution and alignment accuracy, are shown.
thin-film lithium niobate, optical modulator, modes of optical waveguides, integrated optics, modulator
Acknowledgements:the research was funded by the Russian Science Foundation, grant № 19-19-00511.
OCIS codes: 130.2790, 130.3730, 130.3120
References:1. Chen G., Li N., Ng J.D., et al. Advances in lithium niobate photonics: development status and perspectives // Advanced Photonics. 2022. V. 4. № 3. Р. 034003. https://doi.org/10.1117/1.AP.4.3.034003
2. Wooten E.L., Kissa K.M., Yi-Yan A., et al. A review of lithium niobate modulators for fiber-optic communications systems // IEEE J. Sel. Topics Quantum Electron. 2000. V. 6. № 1. P. 69–82. https://doi.org/10.1109/2944.826874
3. Петров В.М., Агрузов П.М., Лебедев В.В., Ильичев И.В., Шамрай А.В. Широкополосные интегрально-оптические модуляторы: достижения и перспективы развития // УФН. 2021. Т. 191. № 7. С. 760–780. https://doi.org/10.3367/UFNr.2020.11.038871
Petrov V.M., Agruzov P.M., Lebedev V.V., Il’ichev I.V., Shamray A.V. Broadband integrated optical modulators: Achievements and prospects // Phys. Usp. 2021. V. 64. № 7. P. 722–739. https://doi.org/10.3367/UFNe.2020.11.038871
4. Bazzan M., Sada C. Optical waveguides in lithium niobate: Recent developments and applications // Appl. Phys. Rev. 2015. V. 2. № 4. P. 040603. http://dx.doi.org/10.1063/1.4931601
5. Luke K., Kharel P., Reimer C., He L., Lončar M., Zhang M. Wafer-scale low-loss lithium niobate photonic integrated circuits // Opt. Exp. 2020. V. 28. P. 24452. https://doi.org/10.1109/IPC47351.2020.9252499
6. Xu M., Cai X. Advances in integrated ultra-wideband electro-optic modulators [Invited] // Opt. Exp. 2022. V. 30. № 5. P. 7253. https://doi.org/10.1364/OE.449022
7. Zhang M., Wang C., Kharel P., Zhu D., Lončar M. Integrated lithium niobate electro-optic modulators: When performance meets scalability // Optica. 2021. V. 8. № 5. P. 652. http://dx.doi.org/10.1364/OPTICA.415762
8. Guarino A., Poberaj G., Rezzonico D., Degl’Innocenti R., Günter P. Electro-optically tunable microring resonators in lithium niobate // Nat. Photonics. 2007. V. 1. № 7. P. 407. http://dx.doi.org/10.1038/nphoton.2007.93
9. Krasnokutska I., Tambasco J.L., Peruzzo A. Tunable large free spectral range microring resonators in lithium niobate on insulator // Sci. Rep. 2019. V. 9. P. 11086. https://doi.org/10.1038/s41598-019-47231-3
10. Escalé M.R., Pohl D., Sergeyev A., Grange R. Extreme electro-optic tuning of Bragg mirrors integrated in lithium niobate nanowaveguides // Opt. Lett. 2018. V. 43. № 7. P. 1515. https://doi.org/10.1364/OL.43.001515
11. Lu J., Al Sayem A., Gong Zh., et al. Ultralow-threshold thin-film lithium niobate optical parametric oscillator // Optica. 2021. V. 8. P. 539. https://doi.org/10.1364/OPTICA.418984
12. Li T., Wu K., Cai M., et al. A single-frequency single-resonator laser on erbium-doped lithium niobate on insulator // APL Photonics. 2021. V. 6. P. 101301. https://doi.org/10.1063/5.0061815
13. Luo R., He Y., Liang H., Li M., Lin Q. Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide // Optica. 2018. V. 5. P. 1006. https://doi.org/10.1364/OPTICA.5.001006
14. Zhao J., Ma C., Rüsing M., Mookherjea S. High quality entangled photon pair generation in periodically poled thin-film lithium niobate waveguides // Phys. Rev. Lett. 2020. V. 124. № 16. P. 163603. https://doi.org/10.1103/PhysRevLett.124.163603
15. Li Y., Lan T., Yang D., Wang Z. Re-analysis of single-mode conditions for thin-film lithium niobate rib waveguides // Results in Phys. 2021. V. 30. P. 104824. http://dx.doi.org/10.1016/j.rinp.2021.104824
16. Mercante A.J., Shi S., Yao P., Xie L., Weikle R.M., Prather D.W. Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth // Opt. Exp. 2018. V. 26. P. 14810–14816. http://dx.doi.org/10.1364/OE.26.014810
17. Kim C.M., Ramaswamy R.V. Overlap integral factors in integrated optic modulators and switches // J. Lightwave Technol. 1989. V. 7. № 7. P. 1063. https://doi.org/10.1109/50.29633
18. Parfenov M., Tronev A., Ilichev I., Agruzov P., Shamrai A. Precise correction of integrated optical power splitters based on lithium niobate substrates by photorefractive effect local excitation // Appl. Phys. B. 2020. V. 126. № 5. P. 93. https://doi.org/10.1007/s00340-020-07440-5
19. Parfenov M., Agruzov P., Ilichev I., Bozhko S., Shamrai A. Design of hybrid waveguide structures for high-efficiency integrated optical superconducting single photon detectors on Ti:LiNbO3 waveguides // IEEE Photonics J. 2021. V. 13. № 6. P. 6600107. https://doi.org/10.1109/JPHOT.2021.3120930
20. Johnson P.B., Christy R.W. Optical constants of the noble metals // Phys. Rev. B. 1972. V. 6. P. 4370. https://doi.org/10.1103/PhysRevB.6.4370
21. Кузнецов И.В., Перин А.С. Математическое моделирование характеристик электрооптического модулятора в конфигурации интерферометра Маха–Цендера на основе тонких плёнок ниобата лития // Оптический журнал. 2023. Т. 90. № 2. С. 68–77. http://doi.org/10.17586/1023-5086-2023-90-02-68-77
Kuznetsov I.V., Perin A.S. Mathematical modeling of the parameters of an electro-optic modulator in the Mach–Zehnder interferometer configuration based on thin lithium niobate films // Journal of Optical Technology. 2023. V. 90. № 2. P. 93–97. https://doi.org/10.1364/JOT.90.000093
22. Salvestrini J.-P., Guilbert L., Fontana M., Abarkan M., Gille S. Analysis and control of DC drift in LiNbO3-based Mach–Zehnder modulators // J. Lightwave Technol. 2011. V. 29. № 10. Р. 1522. https://doi.org/10.1109/JLT.2011.2136322
23. Zhu D., Shao L., Yu M., et al. Integrated photonics on thin-film lithium niobate // Adv. Opt. Photon. 2021. V. 13. P. 242–352. https://doi.org/10.1364/AOP.411024
24. Li Y., Lan T., Yang D., Bao J., Xiang M., Yang F., Wang Z. High-performance Mach–Zehnder modulator based on thin-film lithium niobate with low voltage-length product // ACS Omega. 2023. V. 8. № 10. P. 9644–9651. https://doi.org/10.1021/acsomega.3c00310
25. Melloni A., Monguzzi P., Costa R., Martinelli M. Design of curved waveguides: The matched bend // JOSA A. 2003. V. 20. № 1. P. 130137. https://doi.org/10.1364/JOSAA.20.000130