DOI: 10.17586/1023-5086-2024-91-01-91-100
УДК: 532.6, 53.06, 535.016
The influence of laser-deposited carbon-containing nanoparticles on the orienting properties of the conducting layer based on indium tin oxide for liquid crystal devices
Full text on elibrary.ru
Тойкка А.С., Федорова Л.О., Каманина Н.В. Влияние лазерно-осажденных углерод-содержащих наночастиц на ориентирующие свойства проводящего слоя на основе оксида индия и олова для жидкокристаллических устройств // Оптический журнал. 2024. Т. 91. № 1. С. 91–100. http://doi.org/10.17586/1023-5086-2024-91-01-91-100
Toikka A.S., Fedorova L.O., Kamanina N.V. The influence of laser-deposited carbon-containing nanoparticles on the orienting properties of the conducting layer based on indium tin oxide for liquid crystal devices [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 1. P. 91–100. http://doi.org/10.17586/1023-5086-2024-91-01-91-100
Andrei S. Toikka, Larisa O. Fedorova, and Natalia V. Kamanina, "Influence of laser-deposited carbon-containing nanoparticles on the orienting properties of indium-tin-oxide-based conducting layers for liquid crystal devices," Journal of Optical Technology. 91(1), 55-60 (2024). https://doi.org/10.1364/JOT.91.000055
Subject of study. Thin films of indium tin oxide with laser-deposited carbon nanotubes and shungites. Aim of study. Experimental study of the influence of carbon nanotubes and shungites on the surface properties of indium tin oxide thin films in order to use them as the orienting layers in the nematic liquid crystal devices. Method. The deposition of thin films and nanoparticles was carried out by a laser-oriented method using a CO2 laser. The optical scheme was coordinated with the control electrical grid, the field strength on which varied in the range of 100–600 V/cm. To diagnose the surface, atomic force microscopy in the contact mode and measurement of the contact angle by the sessile drop method were used. To take into account roughness, a technique for measuring wetting hysteresis was used. To calculate the free surface energy, the Owens–Wendt–Rabel–Kaelble method was used. Main results. The relationship between the nanoparticles used, their deposition mode and roughness is described. An increase in the dispersion component of free surface energy was revealed during the deposition of carbon nanotubes and an increase in the polar component during the deposition of shungites. The tendency for the orientation of 4-cyano-4ў-pentylbiphenyl liquid crystals to change from a tilted orientation towards homeotropic during the deposition of carbon nanotubes is shown, and the transition from tilted orientation towards planar during the deposition of shungites is shown. Practical significance. The results obtained indicate the possible use of indium tin oxide films not only as antireflective coatings and contacts, but also as orienting layers with the ability to tunable properties in a wide spectral and energy range. This makes it possible to simplify the architecture of nematic liquid crystal devices used in laser technologies, display techniques, biomedicine and other related areas.
indium tin oxides, carbon nanotubes, shungites, laser-oriented deposition, alignment layers, liquid crystal devices, cyanobiphenyls, wetting, Owens–Wendt–Rabel–Kaelble method
OCIS codes: 160.3710, 230.3720, 190.0190, 240.0310, 240.6700
References:1. Yin K., He Z., Wu S.T. Spotlighting recent advances in liquid-crystal devices for beam-steering applications // Information Display. 2021. V. 37. № 1. P. 9–13. http://doi.org/10.1002/msid.1176
2. Huang Y., Liao E., Chen R., Wu S.T. Liquid-crystal-on-silicon for augmented reality displays // Appl. Sci. 2018. V. 8. № 2366. P. 1–17. http://doi.org/10.3390/app8122366
3. Choudhary A., George T.F., Li G. Conjugation of nanomaterials and nematic liquid crystals for futuristic applications and biosensors // Biosensors. 2018. V. 8. № 69. P. 1–17. http://doi.org/10.3390/bios8030069
4. He Y., Fan Q., Gao J., Chen H., Guo J. Induction of a helical superstructure in photoresponsive liquid crystals: Switching from linearly polarized to circularly polarized luminescence // Materials Chemistry Frontiers. 2022. V. 6. P. 1844–1849. http://doi.org/10.1039/D2QM00255H
5. Каманина Н.В., Тойкка А.С., Зверева Г.Н., Кужаков П.В., Барнаш Я.В., Тарасов С.А. Рельеф поверхности полиимидных тонкопленочных ориентирующих материалов для жидкокристаллических модуляторов света // Жидкие кристаллы и их практическое использование. 2021. Т. 21. № 4. С. 47–52. http://doi.org/10.18083/LCAppl.2021.4.47
Kamanina N.V., Toikka A.S., Zvereva G.N., Kuzhakov P.V., Barnash Ya.V., Tarasov S.A. Surface relief of polyimide thin-film orienting materials for liquid crystalline light modulators [in Russian] // Liquid Crystals and their Application. 2021. V. 21. № 4. P. 47–52. http://doi.org/10.18083/LCAppl.2021.4.47
6. Zhang C., Niu R., Sha P., Li X., Ma H., Sun Y. Inner helical waveplate with angle-insensitive retardation // Opt. Exp. 2021. V. 29. № 18. P. 28924–28934. http://doi.org/10.1364/OE.435975
7. de Gennes P.G., Prost J. The physics of liquid crystals. Oxford: Oxford Science Publ., 1995. 616 p.
8. Mc Ewen R.S. Liquid crystals, displays and devices for optical processing // J. Phys. B: Sci. Instrum. 1987. V. 20. № 1. P. 364–377
9. Oseen C.W. The theory of liquid crystals // Trans. Faraday Soc. 1933. V. 29. P. 883–899. http://doi.org/10.1039/TF9332900883
10. Frank F.C. Liquid crystals: On theory of liquid crystals // Discuss. Faraday Soc. 1958. V. 25. P. 19–28. http://doi.org/10.1039/DF9582500019
11. Ericksen J.L., Truesdell C. Exact theory of stress and strain in rods and shells // Archive for Rational Mechanical and Analysis. 1957. V. 1. P. 295–323. http://doi.org/10.1007/BF00298012
12. Каманина Н.В., Тойкка А.С., Квашнин Д.Г. Жидкокристаллические системы с WS2 наночастицами в эффекте ограничения оптического излучения // Жидкие кристаллы и их практическое использование. 2021. Т. 21. № 2. С. 73–81. http://doi.org/10.18083/LCAppl.2021.2.73
Kamanina N.V., Toikka A.S., Kvashnin D.G. Liquid crystal systems with WS2 nanoparticles in the optical limiting effect [in Russian] // Liquid Crystals and their Application. 2021. V. 21. № 2. P. 73–81. http://doi.org/10.18083/LCAppl.2021.2.73
13. Ibragimov T.D., Rzayev R.M. Dielectric relaxation, electric conductivity, and electro-optic properties of SWCNT-doped liquid crystal 5CB // Fullerenes, Nanotubes and Carbon Nanostructures. 2020. V. 28. № 12. P. 982–988. http://doi.org/10.1080/1536383X.2020.1788543
14. Rani A., Chakrabory S., Sinha A. Effect of CdSe/ZnS quantum dots doping on the ion transport behavior in nematic liquid crystal // J. Molecular Liquids. 2021. V. 342. № 117327. P. 1–13. http://doi.org/10.1016/j.molliq.2021.117327
15. Каманина Н.В., Тойкка А.С., Барнаш Я.В. и др. Особенности функционирования жидкокристаллических элементов, легированных наночастицами CoFe2O4 // Жидкие кристаллы и их практическое использование. 2022. Т. 22. № 4. С. 83–91. http://doi.org/10.18083/LCAppl.2022.4.83
Kamanina N.V., Toikka A.S., Barnash Ya.V., et al. Functioning features of liquid crystalline cells doped with CoFe2O4 nanoparticles [in Russian] // Liquid Crystals and their Application. 2022. V. 22. № 4. P. 83–91. http://doi.org/10.18083/LCAppl.2022.4.83
16. Каманина Н.В., Тойкка А.С., Лихоманова С.В., Зубцова Ю.А., Барнаш Я.В., Кужаков П.В. К вопросу о корреляции между концентрацией вводимых углеродных наночастиц и рельефом поверхности органических матриц в применении к ориентации жидких кристаллов // Жидкие кристаллы и их практическое использование. 2022. Т. 22. № 2. С. 42–52. http://doi.org/10.18083/LCAppl.2022.2.42
Kamanina N.V., Toikka A.S., Likhomanova S.V., Zubtsova Y.A., Barnash Y.V., Kuzhakov P.V. Correlation between concentration of injected carbon nanoparticles and surface relief of organic matrices as applied to liquid crystal orientation [in Russian] // Liquid Crystals and their Application. 2022. V. 22. № 2. P. 42–52. http://doi.org/10.18083/LCAppl.2022.2.42
17. Liu S., Nys I., Neyts K. Two-step photoalignment with high resolution for the alignment of blue phase liquid crystal // Advanced Optical Materials. 2022. V. 10. № 2200711. P. 1–7. http://doi.org/10.1002/adom.202200711
18. Moon J., Kang C., Kang H. Vertical alignment of liquid crystals on phenylphenoxymethyl-substituted polystyrene—PS derivatives structurally similar to LC molecules // Polymers. 2022. V. 14. № 5. P. 1–13. http://doi.org/ 10.3390/polym14050934
19. Chigrinov V., Kudreyko A., Sun J. Photosensitive alignment: Advanced electronic paper-based devices // Crystals. 2022. V. 12. № 364. P. 1–13. http://doi.org/10.3390/cryst12030364
20. König T.A.F., Ledin P.A., Kerszulis J., et al. Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer // ACS Nano. 2014. V. 8. № 6. P. 6182–6192. http://doi.org/10.1021/nn501601e
21. Moerland R.J., Hoogenboom J.P. Subnanometer-accuracy optical distance ruler based on fluorescence quenching by transparent conductors // Optica. 2016. V. 3. № 2. P. 112–117. http://doi.org/10.1364/OPTICA.3.000112
22. Kim Y., Won K., An J., et al. Large-area liquid crystal beam deflector with wide steering angle // Appl. Opt. 2020. V. 59. № 24. P. 7462–7468. http://doi.org/10.1364/AO.398863
23. Fan C.Y., Chuang T.J., Wu K.H., Su G.D.J. Electrically modulated varifocal metalens combined with twisted nematic liquid crystals // Opt. Exp. 2020. V. 28. № 7. P. 10609–10617. http://doi.org/10.1364/OE.386563
24. Kamanina N., Toikka A., Gladysheva I. ITO conducting coatings properties improvement via nanotechnology approach // Nano Express. 2021. V. 2. № 010006. P. 1–7. http://doi.org/10.1088/2632-959X/abd90c
25. d’Alessandro A., Asquini R. Light propagation in confined nematic liquid crystals and device applications // Appl. Sci. 2021. V. 11. № 8713. P. 1–17. http://doi.org/10.3390/app11188713
26. Dierking I. Carbon allotropes as ITO electrode replacement materials in liquid crystal devices // C — Journal of Carbon Research. 2020. V. 6. № 8. P. 1–28. http://doi.org/10.3390/c6040080
27. Lim Y.J., Lee J.H., Lee G.Y., et al. Polyimide-free vertical alignment in a binary mixture consisting of nematic liquid crystal and reactive mesogen: Pretilt modulation via two-step polymerization // J. Molecular Liquids. 2021. V. 340. № 117302. P. 1–7. http://doi.org/10.1016/j.molliq.2021.117302
28. Каманина Н.В., Васильев П.Я., Студенов В.И. Оптическое покрытие на основе ориентированных в электрическом поле углеродных нанотрубок для оптического приборостроения, микро- и наноэлектроники при нивелировании границы раздела сред: твердая подложка-покрытие // Патент РФ № RU2405177. Бюл. 2010.
Kamanina N.V., Vasilyev P.Y., Studeonov V.I. Optical coating based on oriented in the electric field CNTs for the optical devises, micro- and nanoelectronics under the conditions when the interface: Solid substrate-coating can be eliminated // RF Patent № RU2405177. Bull. 2010.
29. Toikka A.S., Kamanina N.V. The control of ITO conductive coating relief via laser-oriented deposited carbon nanotubes // J. Advanced Materials and Technologies. 2022. V. 7. № 1. P. 58-67. http://doi.org/10.17277/jamt.2022.01.pp.058-067
30. Bonch-Bruevich A.M., Libenson M.N., Makin V.S., Trubaev V.V. Surface electromagnetic waves in optics // Opt. Eng. 1992. V. 31. № 4. P. 718–730. http://doi.org/10.1117/12.56133
31. Owens D.K., Wendt R.C. Estimation of the surface free energy of polymers // J. Apply. Polym. Sci. 1969. V. 13. № 8. P. 1741–1747. http://doi.org/10.1002/app.1969.070130815
32. Good R.J. Contact angle, wetting, and adhesion: A critical review // J. Adhesion Science and Technology. 1992. V. 6. № 12. P. 1269–1302. http://doi.org/10.1163/156856192X00629
33. Toosi S.F., Moradi S., Hatzikiriakos S.G. Fabrication of micro/nano patterns on polymeric substrates using laser ablation methods to control wettability behaviour: A critical review (Ch. 2) // Progress in Adhesion and Adhesives. 2018. P. 53–75. http://doi.org/10.1002/9781119526445.ch2
34. Сумм Б.Д. Гистерезис смачивания // Соросовский образовательный журнал. 1999. № 7. С. 98–102.
Summ B.D. Wetting hysteresis [in Russian] // Soros Education Journal. 1999. № 7. P. 98–102.