ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2024-91-10-68-79

УДК: 535.349; 57.022

The effect of the products of vacuum ultraviolet photolysis of water on the survival of microorganisms

For Russian citation (Opticheskii Zhurnal):

 Зверева Г.Н., Кирцидели И.Ю. Влияние продуктов вакуумного ультрафиолетового фотолиза воды на выживаемость микроорганизмов // Оптический журнал. 2024. Т. 91. № 10. С. 68–79. http://doi.org/10.17586/1023-5086-2024-91-10-68-79

 

Zvereva G.N., Kirtsideli I.Yu. The effect of the products of vacuum ultraviolet photolysis of water on the survival of microorganisms [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 10. P. 68–79. http://doi.org/10.17586/1023-5086-2024-91-10-68-79

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. The indirect mechanism of the effect of vacuum ultraviolet radiation on the survival of microorganisms was studied. Aim of study. Comparison of the effectiveness of the impact of reactive products of vacuum ultraviolet ( Δλ = 166–182 nm) photolysis of water, acting from outside and inside the biological cell. Determining the degree of change in the spectrum of vacuum ultraviolet radiation when passing micron-thick layers of water and finding the concentrations of photolysis products formed during this process. Method. During the research, microscopic fungi Rhodotorula colostri (dry and covered with a water layer) were irradiated with vacuum ultraviolet irradiation of xenon excimer lamps. The spectral composition of vacuum ultraviolet radiation and its change during the passage of water layers was found experimentally and by calculation. The concentration of water photolysis products was determined by numerical simulation. The survival of microorganisms was assessed by colony counting, influence of reactive products of photolysis of intracellular water was assessed by adding antioxidants to the nutrient medium. Main results. When irradiated through a layer of water, the survival probability of microorganisms increased by an average of 60% in the case of spores not containing antioxidants and by 40% in the case of spores with antioxidants compared to dry spores. This increase can be explained by a decrease in the photochemical activity of radiation due to the absorption of the short-wavelenght part of spectrum and a less effect of reactive photolysis products from outside than from inside. It is shown, that when passing through a water layer with a thickness d > 1 μm, the short-wavelength wing λ < 170 nm of the xenon excimers emission band is absorbed. It was found that the main reactive products of vacuum ultraviolet photolysis of water are H2O2, HO2
, ·OH with concentrations of the order of 1014 cm–3. Practical significance. The results obtained in the work can be used in disinfection technologies, using short-wave ultraviolet radiation, and in solving problems of space biology.

Keywords:

vacuum ultraviolet radiation, water photolysis, microscopic fungi, reactive oxygen species (ROS), ·OH radical, DNA, astrobiology

Acknowledgements:

the authors are grateful to the S.I. Vavilov State Optical Institute for the opportunity to use spectral equipment and vacuum ultraviolet light sources, the biological part of the work was carried out within the framework of a state assignment in accordance with the thematic plan of the BIN RAS on topic № AAAA-A19-119020890079-6, part of the work was performed on the equipment of the Center for Common Use “Cellular and Molecular technologies for studying plants and fungi" Botanical Institute named after. V.L. Komarova RAS.

OCIS codes: 260.5130; 260.7210;170.1420

References:

1. Heit G., Neuner A., Saugy P.-Y., Braun A.M. VacuumUV (172 cm) actinometry. The quantum yield of the photolysis of water // J. Chem. Phys. A. 1998. V. 102. P. 5551–5561. https://doi.org/10.1021/jp980130i
2. Gonzalez M.G., Oliveros E., Worner M., Braun A.M. Vaccum-ultraviolet photolysis of aqueous reaction systems // J. Photochemistry and Photobiology. 2004. V. 5. № 3. P. 225–246. https://doi.org/10.1016/j.jphotochemrev.2004.10.002
3. Gettoff N. Purification of drinking water by irradiation. A review // Proc. Indian Acad. Sci. (Chem/Sci.). 1993. V. 105. № 6. P. 373–391.
4. Atkinson R., Baulch D.L., Cox R.A., Crowley J.N., Hampson R.H., Hynes R.G., Jenkin M.E., Rossi M.J., Troe J. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I — gas phase reactions of Ox, HOx, NOx and SOx species // Atmos. Chem. Phys. 2004. V. 4. P. 1461–1738. https://doi.org/10.5194/acp-4-1461-2004
5. Zvereva G.N., Letova E.Yu. Features of the formation of barrier discharge in xenon excimer lamps // Proc. SPIE. 2019. 1132222. https://doi.org/10.1117/12.2548856
6. Герасимов Г.Н., Зверева Г.Н. Численное моделирование процессов в плазме разряда в криптоне // Оптический журнал. 1997. Т. 64. № 1. С. 20–24.
 Gerasimov G.N., Zvereva G.N. Numerical modeling of processes in discharge plasma in krypton [in Russian] // Journal of Optical Technology. 1997. T. 64. № 1. P. 20-24.
7. Horneck G., Klaus D.M., Mancinelli R.L. Space microbiology // Microb. and Molec. Biol. Res. 2010. V. 74. P. 121–156. https://doi.org/ 10.1128/MMBR.00016-09
8. Авакян С.В., Вдовин А.И., Пустарнаков В.Ф. Ионизирующие и проникающие излучения в околоземном космическом пространстве. С-Петербург: Гидрометеоиздат, 1994. 501 с.  Avakyan S.V., Vdovin A.I., Pustarnakov V.F. Ionizing and penetrating radiation in near-Earth space [in Russian]. St. Petersburg: Gidrometeoizdat, 1994. 501 p.
9. Теренин А.Н. Избранные труды. Элементарные процессы в сложных органических молекулах.
Ленинград: Издательство «Наука», 1974. 474 с.
 Terenin A.N. Selected works. Elementary processes in complex organic molecules [in Russian]. Leningrad: Publishing house "Nauka", 1974. 474 p.
10. Додонова Н.Я., Виноградов И.П., Киселева М.Н. Исследование фотопроцессов в белках и нуклеиновых кислотах в вакуумной ультрафиолетовой области спектра // Спектроскопия фотопревращений (Cб.). 1977. С. 202–212.
Dodonova N.Ya., Vinogradov I.P., Kiseleva M.N. Study of photoprocesses in proteins and nucleic acids in the vacuum ultraviolet region of the spectrum // Spectroscopy of phototransformations [in Russian]. 1977. P. 202–212.
11. Наконечный Ю.В., Пахатова О.В., Додонова Н.Я. Действие вкуумного ультрафиолетового излучения (120–130 нм) на одноклеточные зеленые водоросли Chlamydomodas Reinhardtii // Биофизика. 1996. Т. 41. В. 2. С. 421–427.
Nakonechny Yu.V., Pakhatova O.V., Dodonova N.Ya. Effect of vacuum ultraviolet radiation (120–130 nm) on unicellular green algae Chlamydomodas Reinhardtii [in Russian] // Biophysics. 1996. V. 41. № 2. P. 421–427.
12. Letova E.Yu., Kirtsideli I., Zvereva G.N., Machs E.M. Indirect action of VUV radiation on micro-organisms // Proceedings of SPIE. 2019. V. 11322. 113222M. https://doi.org/10.1117/12.2548657
13. Zvereva G., Kirtsideli I., Machs E., Vangonen A. Mechanisms of the effect of VUV radiation on the microfungi // Proceedings of SPIE. 2018. V. 10614. P. 106141S. https://doi.org/10.1117/12.2303532
14. Зверева Г.Н., Кирцидели И.Ю. Инактивация микроорганизмов под действием вакуумного ультрафиолетового излучения // Оптический журнал. 2021. Т. 88. № 8. С. 67–74. https://doi.org/10.17586/1023-5086-2021-88-08-67-74

Zvereva G.N., Kirtsedeli I.Yu. Inactivation of microorganisms by vacuum ultraviolet radiation // Journal of Optical Technology. 2021. V. 88(8). P. 454–459. https://doi.org/10.1364/JOT.88.000454
15. Morimoto Y., Sumitomo T., Yoshioka M., Takemura T. Resent progress on UV lamps for industries // Proc. of IAS (IEEE Industry application society). 2004. P. 24–31.
16. Лихоманова С.В., Зверева Г.Н., Каманина Н.В. Влияние УФ излучения на рельеф и свойства поверхности 2-циклооктиламин-5-нитропиридин-фуллереновой пленки для ориентирования жидких кристаллов // Жидкие кристаллы и их практическое использование. 2022. Т. 22. № 1. С. 39–46. https://doi.org/ 10.18083/LCAppl.2022.1.39
Likhomanova S.V., Zvereva G.N., Kamanina N.V. The influence of UV radiation on the relief and properties of the surface of 2-cyclooctylamine-5-nitropyridinefullerene film for the orientation of liquid crystals [in Russian] // Liquid crystals and their practical use. 2022. V. 22. № 1. P. 39–46. https://doi.org/10.18083/LCAppl.2022.1.39
17. Weltmann K.D., Kindel E., Woedtke T., Hähnel M., Stieber M., Brandenburg R. Atmospheric-pressure plasma sources: Prospective tools for plasma medicine // Pure Appl. Chem. 2010. V. 82. P. 1223–1237. https://doi.org/10.1351/PAC-CON-09-10-35
18. Blachowicz A., Mayer T., Bashir M., Pieber T.R., De León P., Venkateswaran K. Human presence impacts fungal diversity of inflated lunar/Mars analog habitat // Microbiome. 2017. V. 5. № 62. P. 1–16. https://doi.org/10.1186/s40168-017-0280-8
19. Бирюзова В.И. Ультраструктурная организация дрожжевой клетки. M: Наука, 1993. 224 с.  Biryuzova V.I. Ultrastructural organization of the yeast cell [in Russian]. M: Nauka, 1993. 224 p.
20. Ito T., Ito A., Hieda K., Kobayashi K. Wavelength dependence of inactivation and membrane damage to Saccharomyces cerevisiae cells by monochromatic synchrotron Vacuum-uv radiation (145–190 nm) // Rad. Res. 1983. V. 96. P. 532–548. https://doi.org/10.2307/3576120
21. Zoschke K., Börnick H., Worch E. Vacuum-UV radiation at 185 nm in water treatment — a review // Water Research. 2014. Apr 1:52:131-45. https://doi.org/10.1016/j.watres.2013.12.034
22. Sarantopoulou E., Stefi A., Kollia Z., Palles D., Petrou P.S., Bourkoula A., Koukouvinos G., Velentzas D., Kakabakos S., Cefalas A.C. Viability of Cladosporium herbarum spores under 157 nm laser and vacuum ultraviolet irradiation, low temperature (10 K) and vacuum // J. Appl. Phys. 2014. V. 116. P. 104701. https://doi.org/10.1063/1.4894621
23. Бугаенко В.Л., Бяков В.М. Количественная модель радиолиза жидкой воды и разбавленных растворов водорода, кислорода и перекиси водорода. I. Формулировка модели // Химия высоких энергий. 1998. Т. 32. № 6. С. 407–414.
Bugaenko V.L., Byakov V.M. Quantitative model of radiolysis of liquid water and dilute solutions of hydrogen, oxygen and hydrogen peroxide. I. Formulation of the model [in Russian] // High Energy Chemistry. 1998. V. 32. № 6. P. 407–414.
24. Зверева Г.Н. Исследование разложения воды вакуумным ультрафиолетовым излучением // Оптика и спектроскопия. 2010. Т. 108. № 6. С. 963–970.
Zvereva G.N. Investigation of water decomposition by vacuum ultraviolet radiation // Optics and spectroscopy. 2010. V. 108. № 6. P. 915–922. https://ui.adsabs.harvard.edu/link_gateway/2010OptSp.108..915Z/doi:10.1134/S0030400X10060135
25. Crapulli F., Santoro D., Sasges M.R., Ray A.K. Mechanistic modeling of vacuum UV advanced oxidation process in an annular photoreactor // Water Research. 2014. V. 64. P. 209–225. https://doi.org/10.1016/j.watres.2014.06.048
26. Bensasson R.V., Land E.J., Truscott T.G. Flash photolysis and pulse radiolysis. Pergamon Press, 1983. 236 p.
27. Kuwabara M., Minegishi A., Takakakura K., Hieda K., Ito T. Photolysis of water by VUV radiation and reactions with DNA and related compounds in aqueous systems, in Photobiology / Ed. E. Riklis. NY: Plenum Press, 1991. P. 355–363.
28. Folkard M., Prise K.M., Brocklehurst B., Michael B.D. DNA damage induction in dry and hydrated DNA by synchrotron radiation // J. Phys. B: At. Mol. Opt. Phys. 1999. V. 32. P. 2753–2761.
29. Takakura K., Ishikawa M., Ito T. Action spectrum for the induction of single-strand breaks in DNA in buffered aqueous solution in the wavelength range from 150 to 272 nm: Dual mechanism // Int. J. Radiat. Biol. 1987. V. 52. P. 667–675. https://doi.org/10.1080/09553008714552181
30. Michael B.D., Prise K.M., Folkard M., Vojnovic B., Brocklehurst B., Munro I.H., Hopkirk A. Action spectra for single- and double-strand break induction in plasmid DNA: studies using synchrotron radiation // Int. J. Radiat. Biol. 1994. V. 66. № 5. P. 569–572. https://doi.org/10.1080/09553009414551641
31. Dizdarogly M., Jaruga P. Mechanisms of free radicalinduced damage to DNA // Free Radical Research. 2012. V. 46. № 4. P. 382–419. https://doi.org/10.3109/10715762.2011.653969
32. Aslam Siddiqi M., Bothe E. Single- and double-strand break formation in DNA irradiated in aqueous solution: Dependence on dose and OH radical scavenger concentration // Radiation Research. 1987. V. 112. P. 449–463. https://doi.org/10.2307/3577098
33. Liphard M., Bothe E., Sculte-Frohlinde D. The influence of gluthatione on single-strand breakage in single-stranded DNA irradiated in aqueous solution in the absence and presence of oxygen // Int. J. Radiat. Biol. 1990. V. 58. P. 589–602. https://doi.org/10.1080/09553009014551951
34. Billen D. The role of hydroxyl radical scavengers in preventing DNA strand breaks induced by X irradiation of toluene-treated Escherichia coli // Rad. Res. 1984. V. 97. P. 626–629.
35. Schulte-Frohlinde D., Bothe E. Determination of the constants of the alper formula for single-strand breaks from kinetic measurements on DNA in aqueous solution and comparison with data from cells // International Journal of Radiation Biology. 1990. V. 58. № 4. P. 603–611. https://doi.org/10.1080/09553009014551961
36. Феофилова E.П. Клеточная стенка. M.: Наука, 1983. 248 с.  Feofilova E.P. Cell wall [in Russian]. M.: Nauka, 1983. 248 p.
37. Dickinson H.R., Johnson W.C. Optical properties of sugars. II. Vacuum-ultraviolet absorption of model compounds // J. Am. Chem. Soc. 1974. V. 96. P. 5050–5054. https://doi.org/10.1021/ja00823a006
38. Inagaki T., Hamm R.N., Arakawa E.T., Birkhoff R.D. Optical property of bovine plasma albumin between 2 and 82 eV // Biopolymers. 1975. V. 14. P. 839–847.