DOI: 10.17586/1023-5086-2024-91-10-80-93
УДК: 535.361.22:577.3
The effect of vaping on the optical properties of ovaries in normal conditions and in sarcoma
Full text on elibrary.ru
Селифонов А.А., Селифонова Е.И., Варламова Г.Н., Тучин В.В. Влияние жидкости для электронных сигарет на оптические свойства яичников в норме и при саркоме // Оптический журнал. 2024. Т. 91. № 10. С. 80–93. http://doi.org/10.17586/1023-5086-2024-91-10-80-93
Selifonov A.A., Selifonova E.I., Varlamova G.N., Tuchin V.V. The effect of vaping on the optical properties of ovaries in normal conditions and in sarcoma [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 10. P. 80–93. http://doi.org/10.17586/1023-5086-2024-91-10-80-93
Subject of study. In this study, the effect of liquids for electronic cigarettes (e-liquid) on the optical properties of normal and sarcoma ovaries was studied using reflectance spectroscopy. Aim of study. Determination of quantitative characteristics of molecular diffusion of e-liquid (70% glycerol and 30% propylene glycol) in tissues of normal feline ovaries and cat ovaries with sarcoma. Method. The optical properties of the studied samples were studied by diffuse optical reflectance and transmission spectroscopy in the spectral range from 200 to 800 nm. Main results. The diffusion effective coefficients of the test liquid for electronic cigarettes were calculated: in the tissues of normal cat ovaries D = (2.7 ± 0.4)х10–6 cm2/s, and for ovaries with sarcoma D = (2.9 ± 0.5)х10–5 cm2/s. It has been shown that during the interaction of tissue samples with e-liquids, a temporary and reversible decrease in diffuse reflection and an increase in total transmittance in relation to control samples is observed in a wide spectral range of wavelengths from deep UV to NIR, which indicates a reversible decrease in light scattering in the tissue and corresponding change in its structure. As a result of the action of the e-liquid under study, the total transmittance coefficient increases by 22 times for normal ovarian tissue in 100 minutes with a sample thickness of about 1 mm. In case of stromal sarcoma, the increase in transmission is 2 times with the same sample thickness and operating time of about 40 minutes. Practical significance. The data obtained may be useful in creating new, more effective protocols for optical endoscopic diagnostics of the reproductive system, photodynamic or photothermal therapy, and surgical interventions using a laser scalpel in the treatment of ovarian cancer. These results can also be used for cryopreservation of organs, including organs of the human reproductive system, since glycerin and propylene glycol are used in cryobiology.
ovarian tissue, liquid for electronic cigarettes, optical properties, total transmittance spectra, diffuse reflectance spectra, diffusion coefficient, efficiency of optical clearing
Acknowledgements:OCIS codes: 300.0300
References:1. Tuchin V.V. Tissue optics: Light scattering methods and instruments for medical diagnostics. 3rd ed. Bellingham,WA, USA: SPIE Press, 2015. 864 р.
2. Tuchin V.V. Optical clearing of tissues and blood. USA, WA, Bellingham: SPIE Press, 2006. 659 р.
3. Oliveira L.M.C., Tuchin V.V. The optical clearing method — a new tool for clinical practice and biomedical engineering. Cham, Switzerland: Springer, 2019. 852 р.
4. Tuchin V.V., Zhu D., Genina E.A. Handbook of tissue optical clearing: New prospects in optical imaging. USA, FL, Boca Raton: CRC Press, 2022. 855 р.
5. Genina E.A., Bashkatov A.N., Tuchin V.V. Tissue optical immersion clearing // Expert Rev. Med. Devices. 2010. V. 6. P. 825–842. https://doi.org/10.1586/ erd.10.50
6. Селифонов А.А., Тучин В.В. Оптические свойства дентина зуба человека при иммерсии in vitro в глюкозе и кинетика этого процесса // Оптический журнал. 2020. Т. 87. № 3. С. 46–55. http://doi.org/10.17586/1023-5086-2020-87-03-46-55
Selifonov A. A., Tuchin V. V. Optical properties of human dentin when it is immersed in glucose in vitro and the kinetics of this process // Journal of Optical Tech nology. 2020. V. 87(3). P. 168–174. https://doi.org/10.1364/ JOT.87.000168
7. Oliveira L.R., Ferreira R.M., Pinheiro M.R., Silva H.F., Tuchin V.V., Oliveira L.M. Broadband spectral verification of optical clearing reversibility in lung tissue // J. Biophotonics. 2022. V. 16. Article number. e202200185. https://doi.org/10.1002/jbio.202200185.
8. Musina G.R., Gavdush A.A., Chernomyrdin N.V., Dolganova I.N., Ulitko V.E, Cherkasova O.P., Kurlov V.N., Komandin G.A., Zhivotovskii I.V., Tuchin V.V., Zaytsev K.I. et al. Optical properties of hyperosmotic agents for immersion clearing of tissues in terahertz spectroscopy // Opt. Spectrosc. 2020. V. 128. P. 1026–1035. https://doi.org/10.1134/S0030400X20070279.
9. Lee S., Ozkavukcu S., Ku S.Y. Current and future perspectives for improving ovarian tissue cryopreservation and transplantation outcomes for cancer patients // Reprod. Sci. 2021. V. 28. P. 1746–1758. https://doi.org/10.1007/s43032-021-00517-2
10. VonWolff M., Donnez J., Hovatta O., Keros V., Maltaris T., Montag M., Salle B., Sonmezer M., Andersen C.Y. Cryopreservation and autotransplantation of human ovarian tissue prior to cytotoxic therapy — a technique in its infancy but already successful in fertility preservation // Eur. J. Cancer. 2009. V. 45. P. 1547–1553. https://doi.org/10.1016/j.ejca.2009. 01.029
11. Del-Pozo-Lerida S., Salvador C., Martínez-Soler F., Tortosa A., Perucho M., Gimenez-Bonaf P. Preservation of fertility in patients with cancer (Review) // Oncol. Rep. 2019. V. 41. P. 2607–2614. https://doi.org/10.3892/or.2019.7063
12. Siegel R.L., Miller K.D., Fuchs H.E., Jemal A. Cancer statistics // CA Cancer J. Clin. 2022. V. 72. P. 7–33. https://doi.org/10.3322/caac.21708
13. Del Valle L., Corchon S., Palop J., Rubio J.M., Celda L. The experience of female oncological patients and fertility preservation: A phenomenology study // Eur. J. Cancer Care. 2022. V. 31. Article number. e13757. https://doi.org/10.1111/ecc.13757
14. Tuchina D.K., Meerovich I.G., Sindeeva O.A., Zherdeva V.V., Savitsky A.P., Bogdanov A.A., Tuchin V.V. Magnetic resonance contrast agents in optical clearing: Prospects for multimodal tissue imaging // J. Biophotonics. 2020. V. 13. Article number: e201960249. https://doi.org/10.1002/jbio.201960249
15. Vignarajan C.P., Malhotra N., Singh N. Ovarian reserve and assisted reproductive technique outcomes after laparoscopic proximal tubal occlusion or salpingectomy in women with hydrosalpinx undergoing in vitro fertilization: A randomized controlled trial //J. Minim. Invasive Gynecol. 2019. V. 26. P. 1070–1075. https://doi.org/10.1016/j.jmig. 2018.10.013
16. Целкович Л.С., Балтер Р.Б., Богданова М.А., Борисова О.В., Шатунова Е.П., Верховникова Т.С., Прибыткова Е.И., Никулина И.Е., Иванова Т.В., Ильченко О.А., Саловаров Д.А. Гистероскопия и гистеросальпингография как методы выявления внутриматочной патологии при подготовке пациенток к процедуре ЭКО // Вестник медицинского института «РЕАВИЗ». 2018. № 3. С. 112–120.
Tselkovich L.S., Balter R.B., Bogdanova M.A., Borisova O.V., Shatunova E.P., Verkhovnikova T.S., Pribytkova E.I., Nikulina I.E., Ivanova T.V., Ilchenko O.A., Salovarov D.A. Hysteroscopy and hysterosalpingography as methods for identifying intrauterine pathology when preparing patients for the IVF procedure [in Russian] // Bulletin of the REAVIZ Medical Institute. 2018. № 3. P. 112–120.
17. Kang Uk, Папаян Г.В., Березин В.Б., Петрищев Н.Н., Галагудза М.М. Спектрометр для флуоресцентно-отражательных биомедицинских исследований // Оптический журнал. 2013. Т. 80. № 1. С. 56–67.
Kang Uk, Papayan G.V., Berezin V.B., Petrishchev N.N., Galagudza M.M. Spectrometer for fluorescence-reflection biomedical research // Journal of Optical Technology. 2013. V. 80(1). P. 40–48. https://doi.org/10.1364/JOT.80.000040
18. Папаян Г.В., Журба В.М., Кишалов А.А., Петрищев Н.Н., Галагудза М.М. Волоконный флуоресцентно-отражательный спектрометр с многоволновым возбуждением // Оптический журнал. 2014. Т. 81. № 1. С. 38–43.
Papayan G. V., Petrishchev N. N., Zhurba V. M., Kishalov A. A., Galagudza M. M. Fiber fluorescence–reflection spectrometer with multiwave excitation. // Journal of Optical Technology. 2014. V. 81. № 1. Р. 29–32. https://doi.org/10.1364/JOT.81.000029 19. Будаговская О.Н., Козлова И.И. Простой оптический критерий степени зрелости плодов земляники // Оптический журнал. 2022. Т. 89. № 1. С. 17–23. http://doi.org/10.17586/1023-5086-2022-89-01-17-23
Budagovskaya O.N., Kozlova I.I. Simple optical criterion of the ripeness level of strawberries // Journal of Optical Technology. 2022. V. 89. № 1. Р 12–16. https:// doi.org/10.1364/JOT.89.000012
20. Немкович Н.А., Шанько Ю.Г., Собчук А.Н., Рубинов А.Н., Крученок Ю.В., Чухонский А.И. Система оптической диагностики опухолей и идентификация с ее помощью аденомы гипофиза // Оптический журнал. 2014. Т. 81. № 10. С. 30–41.
Nemkovich N.A., Sobchuk A.N., Rubinov A.N., Kruchenok Yu.V., Shan’ko Yu.G., Chukhonski A.I. System for the optical diagnosis of tumors, and using it to identify pituitary adenoma // Journal of Optical Technology. 2014. V. 81. № 10. Р. 578–585. https://doi.org/10.1364/JOT.81.000578
21. Башкатов А.Н., Генина Э.А., Кочубей В.И., Рубцов В.С., Колесникова Е.А., Тучин В.В. Оптические свойства тканей толстой кишки человека в спектральном диапазоне 350–2500 нм // Квантовая электроника. 2014. Т. 44. № 8. С. 779–784.
Bashkatov A.N., Genina E.A., Kochubey V.I., Kolesnikova E.A., Tuchin V.V., Rubtsov V.S. Optical properties of human colon tissues in the 350-2500 nm spectral range // Quantum Electronics. 2014. V. 44. № 8. Р. 779–784.
22. Беликов А.В., Загорулько А.М., Смирнов С.Н., Сергеев А.Н., Михайлова А.А., Шимко А.А. Оптические свойства in vitro катарактальных хрусталиков глаза человека в видимом и ближнем ИК диапазонах // Оптика и спектроскопия. 2019. Т. 126. № 5. С. 656–664. https://doi.org/10.21883/OS.2019.05.47667.16-19
Belikov A.V., Smirnov S.N., Sergeev A.N., Zagorul'ko A.M., Mikhailova A.A., Shimko A.A. Optical proper ties of human eye cataractous lens in vitro in the visible and near-ir ranges of the spectrum // Opt. Spectr. 2019. V. 126. № 5. Р. 574–579. https://doi.org/ 10.1134/S0030400X19050035
23. Kotyk A., Janacek K. Cell membrane transport: An interdisciplinary approach. New York: Plenum Press, 1977. 348 p.
24. Tuchin V.V. (ed.). Handbook of optical biomedical diagnostics. Second Edition. V. 1. Light-tissue interaction. WA, Bellingham: SPIE Press, 2016. 864 р.
25. Carvalho S., Gueiral N., Nogueira E., Henrique R., Oliveira L., Tuchin V.V. Glucose diffusion in colorectal mucosa — a comparative study between normal and cancer tissues // Journal of Biomedical Optics. 2017. V. 22. № 9. P. 091506. https://doi.org/10.1117/1. JBO.22.9.091506
26. Selifonov A.A., Rykhlov A.S., Tuchin V.V. The glycerol-induced perfusion-kinetics of the cat ovaries in the follicular and luteal phases of the cycle // Diagnostics. 2023. V. 13. № 3. P. 490–506. https://doi.org/10.3390/ diagnostics13030490
27. Selifonov A. A., Rykhlov A. S., Tuchin V. V. Ex vivo study of the kinetics of ovarian tissue optical properties under the influence of 40%-glucose // Izvestiya of Saratov University. Physics. 2023. V. 23. № 2. P. 120–127. https://doi.org/10.18500/1817-3020-2023-23-2-120-127.
28. Carneiro I., Carvalho S., Henrique R., Selifonov A., Oliveira L., Tuchin V.V. Enhanced ultraviolet spectroscopy by optical clearing for biomedical applications // IEEE Journal of Selected Topics in Quantum Electronics. 2021. V. 27. № 4. Р. 1–8. https://doi.org/10.1109/ JSTQE.2020.3012350