DOI: 10.17586/1023-5086-2024-91-11-100-106
УДК: 538.9
Influence of etching modes on the porosity of layers and photoluminescence of multilayer porous silicon
Леньшин А.С., Пешков Я.А., Черноусова О.В., Канныкин С.В., Гречкина М.В., Минаков Д.А., Золотухин Д.С., Агапов Б.Л. Влияние режимов травления на пористость слоев и фотолюминесценцию многослойного пористого кремния // Оптический журнал. 2024. Т. 91. № 11. С. 100–106. http://doi.org/10.17586/1023-5086-2024-91-11-100-106
Lenshin A.S., Peshkov Ya.A., Chernousova O.V., Kannykin S.V., Grechkina M.V., Minakov D.A., Zolotukhin D.S., Agapov B.L. Influence of etching modes on the porosity of layers and photoluminescence of multilayer porous silicon [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 11. P. 100–106. http://doi.org/10.17586/1023-5086-2024-91-09-11-100-106
The subject of the study. Multilayer samples of porous silicon formed with varying technological parameters of electrochemical etching. Goal of the work. Experimental study of methods for forming multilayer porous silicon and development of technology for fine-tuning the properties of its surface and volume for use in nanoelectronic devices. Method. The surface morphology was studied by atomic force and scanning electron microscopy. The porosity of the surface layer was analyzed by X-ray reflectometry. The electronic structure of the surface was studied by ultrasoft X-ray emission spectroscopy. Optical properties are represented by photoluminescence spectra. Main results. It was found that with a stepwise increase in the electrochemical anodizing current, multilayer structures with different morphologies, surface compositions, and layer porosity values are formed on a single-crystalline silicon substrate. In this case, photoluminescence is mainly affected by the composition of the upper layer. Special attention is paid to the discussion of the effects resulting from a gradual increase in current density while maintaining the overall etching time. Practical significance. The study results of the etching modes effect on the morphology and optical properties of porous silicon will serve as the basis for the development of nanoelectronics devices based on porous structures.
porous silicon, multilayer nanostructures, X-ray reflectivity
Acknowledgements:porous silicon, multilayer nanostructures, X-ray reflectivity
OCIS codes: 160.4236, 300.6250
References:1. Canham L. Handbook of porous silicon. CH.: Springer, 2014. 733 p. https://doi.org/10.1007/978-3-319-05744-6
2. Pacholski C. Photonic crystal sensors based on porous silicon // Sensors. 2013. V. 13. P. 4694. https://doi.org/10.3390/s130404694
3. Moretta R. Porous silicon optical devices: Recent advances in biosensing applications // Sensors. 2021. V. 21. P. 1336. https://doi.org/10.3390/s21041336
4. Ян Д.Т. Люминесцентные свойства пористого кремния // Оптический журнал. 2013. Т. 80. № 7. С. 21–26.
Yan D.T. Luminescence properties of porous silicon // J. Opt. Technol. 2013. V. 80. № 7. Р. 421–425. https:// doi.org/10.1364/JOT.80.000421
5. Григорьев Л.В., Михайлов А.В. Оптические и фотолюминесцентные свойства пористого кремния, легированного иттербием при лазерно-стимулированном окислении // Оптический журнал. 2016. Т. 83. № 12. С. 98–106.
Grigoriev L.V., Mikhailov A.V. Optical and photoluminescent properties of porous silicon doped with ytterbium under laser-stimulated oxidation // J. Opt. Technol. 2016. V. 83. № 12. P. 787–793. https://doi. org/10.1364/JOT.83.000787
6. Canham L.T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers // Appl. Phys. Lett. 1990. V. 57. P. 1046. https:// doi.org/10.1063/1.103561
7. Seredin P.V., Lenshin A.S. Structural, optical and morphological properties of hybrid heterostructures on the basis of GaN grown on compliant substrate porSi(111) // Appl. Surface Sci. 2019. V. 476. P. 1049. https://doi.org/10.1016/j.apsusc.2019.01.239
8. Lenshin A.S. Features of the two-stage formation of macroporous and mesoporous silicon structures // Condensed Matter and Interphases. 2021. V. 23. P. 41. https://doi.org/10.17308/kcmf.2021.23/3300
9. Asgharizadeh S.T. X-ray reflectometry characterization of porous silicon films prepared by a glancing-angle deposition method // Phys. Rev. B. 2009. V. 79. P. 125405. https://doi.org/10.1103/PhysRevB.79.125405
10. Servidori M. Influence of the electrolyte viscosity on the structural features of porous silicon // Solid State Commun. 2001. V. 118. P. 85. https://doi.org/10.1016/ S0038-1098(01)00036-9
11. Балагуров Л.А., Павлов В.Ф., Петрова Е.А. и др. Исследование пористого кремния и его старения методами полного внешнего отражения рентгеновских лучей и инфракрасной спектроскопии // Физика и техника полупроводников. 1997. Т. 31. № 8. С. 957–960.
Balagurov L.A., Pavlov V.F., Petrova E.A., et al. Total external X-ray reflection and infrared spectroscopy study of porous silicon and its aging // Semiconductors. 1997. V. 31. P. 815. https://doi.org/10.1134/ 1.1187259
12. Lenshin A.S. X-ray reflectivity investigation of multilayer macroporous silicon structures // J. Phys.: Conf. Ser. 2021. V. 1984. P. 012018. http://dx.doi.org/10.1088/ 1742-6596/1984/1/012018
13. Buttard D. X-ray reflectivity investigation of thin ptype porous silicon layers // Solid State Commun. 1998. V. 109. P. 1. https://doi.org/10.1016/S0038- 1098(98)00531-6
14. Lenshin A.S. Investigations of the composition of macro-, micro- and nanoporous silicon surface by ultrasoft X-ray spectroscopy and X-ray photoelectron spectroscopy // Appl. Surface Sci. 2015. V. 359. P. 550. https:// doi.org/10.1016/j.apsusc.2015.10.140
15. Lenshin A.S. Investigation of the relationship between porosity and luminescent properties of porous silicon // Eur. Phys. J. Appl. Phys. 2023. V. 98. P. 36. https://doi.org/10.1051/epjap/2023230001