DOI: 10.17586/1023-5086-2024-91-11-54-62
УДК: 535.2
Time-domain model of signal transformation in a semiconductor optical amplifier for bit error rate estimation along a communication line
Илюшин П.Я., Шипило Д.Е., Николаева И.А., Панов Н.А., Косарева О.Г. Времяразрешенная модель трансформации сигнала в полупроводниковом оптическом усилителе для расчета ошибки передачи по линии связи // Оптический журнал. 2024. Т. 91. № 11. С. 54–62. http://doi.org/10.17586/1023-5086-2024-91-11-54-62
Ilyushin P.Y., Shipilo D.E., Nikolaeva I.A., Panov N.A., Kosareva O.G. Time-domain model of signal transformation in a semiconductor optical amplifier for bit error rate estimation along a communication line [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 11. P. 54–62. http://doi.org/10.17586/1023-5086-2024-91-11-54-62
Subject of study. Fiber optical line containing semiconductor optical amplifiers; spontaneous emission and nonlinearity in semiconductor amplifiers as effects leading to digital signal transmission errors. Goal of the work. Development of a fiber communication line model with built-in semiconductor optical amplifiers that takes into account sources of distortion of weak and strong signals — spontaneous emission of the amplifiers’ active medium and nonlinearity in it respectively. Method. The study was carried out using numerical simulation. The model takes into account the propagation of radiation along a 100 km long optical fiber span, leading to its significant dispersive spreading and absorption. The average power of laser radiation after the fiber span determines the quasi-stationary operating mode of the amplifier, including the power of spontaneous radiation in it. In this mode, the transformation of a quadrature-modulated signal in a semiconductor amplifier is calculated. Main results. A numerical model of a fiber-optic communication line with built-in semiconductor optical amplifiers has been developed. Based on the created model, an analysis of the information loss carried by a quadrature-modulated signal due to the effects of gain dispersion, gain saturation and spontaneous emission of the amplifier’s active medium in the communication line was carried out. It was found that with a laser pulse duration of 12 ps or more, the amplifier’s input power dynamic range exceeds 20 dBm (from –37.5 to –17.5 dBm). Within these limits, compensation of distortion introduced by amplifiers is not required. Practical significance. The results obtained in this work can be used to increase the information transmission speed in fiber communication lines over distances of hundreds to thousands of kilometers.
semiconductor amplifier, quadrature modulation, fiber-optic communication line, spontaneous emission
OCIS codes: 060.1660, 140.5960
References:1. Wang J., Wu Z., Iyer V. High performance optical repeater // US Patent 9 444 551 B2. 2016. Publ. Jun. 23, 2016.
2. Дианов Е.М. Волоконные лазеры // УФН. 2004. Т. 174. № 10. С. 1139—1142. https://doi.org/10.3367/ UFNr.0174.200410m.1139
Dianov E.M. Fiber lasers // Physics-Uspekhi. 2004. V. 47. P. 1065—1068. https://doi.org/10.1070/ PU2004v047n10ABEH002018
3. Alferov Z.I. The double heterostructure concept and its applications in physics, electronics, and technology (Nobel Lecture) // Review of Modern Physics. 2001. V. 73. P. 767. http://dx.doi.org/10.1103/RevModPhys. 73.767
Алфёров Ж.И. Двойные гетероструктуры: концепция и применения в физике, электронике и технологии // УФН. 2002. Т. 172. С. 1068.
4. Gould G. Optically pumped laser amplifiers // US Patent 4 053 845. 1977. Publ. Oct. 11, 1977.
5. Talli G., Adams M.J. Amplified spontaneous emission in semiconductor optical amplifiers: Modelling and experiments // Optics Commun. 2003. V. 218. P. 161. https://doi.org/10.1016/S0030-4018(03)01196-9
6. Тимофеев А.Л., Султанов А.Х., Мешков И.К. и др. Использование голографических методов передачи изображений по многомодовому оптическому волокну для повышения пропускной способности волоконно-оптических линий связи // Оптический журнал. 2023. Т. 90. № 10. С. 13–23. http://doi.org/10.17586/1023 5086-2023-90-10-13-23
Timofeev A.L., Sultanov A.H., Meshkov I. K., et al. Holographic methods of image transmission over multimode optical fiber for increased bandwidth of fiber-optic communication lines // J. Opt. Technol. 2023. V. 90. № 10. P. 569–574. https://doi.org/10.1364/JOT.90.000569
7. Делицын А.Л. Быстрые алгоритмы решения обратной задачи рассеяния для системы уравнений Захарова–Шабата и их приложения // Математические заметки. 2022. Т. 112. № 2. С. 301. https://doi.org/10.4213/mzm13561
Delitsyn A.L. Fast algorithms for solving the inverse scattering problem for the Zakharov–Shabat methodological system and their applications [in Russian] // Mathematical Notes. 2022. V. 112. № 2. P. 301. https://doi.org/10.4213/mzm13561
8. Bonk R., Huber G., Vallaitis T., et al. Impact of alfafactor on SOA dynamic range for 20 GBd BPSK, QPSK and 16-QAM signals // Optical Fiber Commun. Conf. (IEEE). Los-Angeles, USA. March 6 — 10, 2011.
9. Rocha P., Gallep C.M., Conforti E. Impact of semiconductor optical amplifier nonlinear gain over 16-QAM optical signals at 40 and 100 Gbit/s // Opt. Eng. 2018. V. 57. № 10. P. 106112. https://doi.org/10.1117/1. OE.57.10.106112
10. Carena A., Curri V., GaudinoR., et al. A time-domain optical transmission system simulation package accounting for nonlinear and polarization-related effect in fiber // IEEE J. Selected Areas in Commun. 1997. V. 15. № 4. P. 751. https://doi.org/10.1109/49.585785
11. Bahrampour A.R., Mahjoei M., Rasouli A. A theoretical analysis of the effects of erbium ion pair on the dynamics of an optical gain stabilized fiber amplifier // Opt. Commun. 2006. V. 265. P. 283. https://doi.org/10.1016/j.optcom.2006.03.006
12. Brosson P. Analytical model of a semiconductor optical amplifier // J. Lightwave Technol. 1994. V. 12. № 1. P. 49. https://doi.org/10.1109/50.265734
13. Agrawal G.P., Olsson N.A. Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers // IEEE J. Quantum Electron. 1989. V. 25. P. 2297. https://doi.org/10.1109/3.42059
14. Agrawal G.P. Effect of gain dispersion on ultrashort pulse amplification in semiconductor laser amplifiers // IEEE J. Quantum Electron. 1991. V. 27. P. 1843. https://doi.org/10.1109/3.90014
15. Cassioli D., Scotti S., Mecozzi A. A time-domain computer simulation of the nonlinear response of semiconductor optical amplifiers // IEEE J. Quantum Electron. 2000. V. 36. № 9. P. 1072. https://doi.org/10.1109/3.863960
16. Электронный ресурс URL: https://www.inphenix. com/en/semiconductor-optical-amplifiers (INPHENIX INC. / Каталог полупроводниковых оптических усилителей).
Electronic resource URL: https://www.inphenix.com/en/semiconductor-optical-amplifiers (INPHENIX INC. / Catalog of semiconductor optical amplifiers).
17. Электронный ресурс URL: https://www.optokon.com/product/261-single-mode-fiber-g-652-d (OPTKON a.s. / Описание товара Одномодовое Волокно G.652.D).
Electronic resource URL: https://www.optokon.com/ product/261-single-mode-fiber-g-652-d (OPTKON a.s. / Description of product Single Mode Fiber G.652.D).
18. Buus J., Plastow R. A theoretical and experimental investigation of Fabry–Perot semiconductor laser amplifiers // IEEE J. Quantum Electron. 1985. V. 21. № 6. https://doi.org/10.1109/JQE.1985.1072710
19. Connelly M.J. Wideband semiconductor optical amplifier steady-state numerical model // IEEE J. Quantum Electron. 2001. V. 37. № 3. P. 439. https://doi.org/10.1109/3.910455