ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2024-91-11-71-81

УДК: 541.182:535.36

Influence of the of the diamond particles surface layer on the their sols refractive index

For Russian citation (Opticheskii Zhurnal):

Петров М.П., Везо О.С., Войтылов А.В., Войтылов В.В., Трусов А.А. Влияние поверхностного слоя частиц алмаза на показатель преломления их золей // Оптический журнал. 2024. Т. 91. № 11. С. 71–81. http://doi.org/10.17586/1023-5086-2024-91-11-71-81

 

 Petrov M.P., Vezo O.S., Voitylov A.V., Vojtylov V.V., Trusov A.A. Influence of the diamond particles surface layer on the their sols refractive index [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 11. P. 71–81. http://doi.org/10.17586/1023-5086-2024-91-11-71-81

For citation (Journal of Optical Technology):
-
Abstract:

 Subject of study. Study of the influence of the surface layer of nanoparticles on the refractive index of their hydrosols. Aim of study. Development of an optical technique for studying the surface layer of particles in liquid polydisperse systems. Approbation of it for the analysis of nanodiamond particles. Method. It includes the experimental determination of relative changes in the refractive index and absolute changes in the density of systems with varying particle concentrations. Main results. Calculations were carried out using the Mie theory, which showed that the refractive index of diamond hydrosols weakly depends on the size of diamond particles if they do not exceed a fifth of the wavelength of the light used in research, and their volume fraction does not change. This made it possible to expand the range of applicability of the theory of refraction of small particles scattering light as dipoles. Diamond hydrosols with particles of different sizes were studied, for which the volume fraction of amorphous carbon on their surface was determined. Practical significance. The considered method can be used to analyze the surface cleaning of nanodiamond particles during its production.

Keywords:

refraction, hydrosols, nanodiamond, amorphous carbon

Acknowledgements:

the work was carried out with the technical support of resource centers “Interdisciplinary Resource Center in the field of Nanotechnology”, “X-ray diffraction research methods” and “Centre for Diagnostics of Functional Materials for Medicine, Pharmacology and Nanoelectronics” of the Science Park of Saint Petersburg State University, within the framework of project No. АААА-А19-119091190094-6

OCIS codes: 260.0260, 290.0290, 350.0350

References:

1. Ganeev R.A., Ryasnyansky A.I., Kamalov S.R., et al. Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals // J. Phys. 2001. V. 34. № 11. P. 1602–1611. https://doi.org/10.1088/0022-3727/34/11/308
2. Volkova A.V., Ermakova L.E., Golikova E.V. Peculiarities of coagulation of the pseudohydrophilic colloids: Aggregate stability of the positively charged -Al2O3 hydrosol in NaCl solutions // Coll. Surf. A. 2017. V. 516. P. 129–138. https://doi.org/10.1016/j.colsurfa.2016. 12.021
3. Zhang H., Penn R.L., Hamers R.J., et al. Enhanced adsorption of molecules on surfaces of nanocrystalline particles // J. Phys. Chem. 1999. V. 103. P. 4656–4662. https://doi.org/10.1021/jp984574q
4. Jiménez M.L., Fornasari L., Mantegazza F., et al. Electric birefrince of dispersions of platelets // Langmuir. 2012. V. 28. P. 251–258. https://doi.org/:10.1021/la2036949
5. Arenas-Guerrero P., Iglesias G.R., Delgado Á.V., et al. Electric birefringence spectroscopy of montmorillonite particles // Soft Matter. 2016. V. 12. P. 4923–4931. https://doi.org/10.1039/C6SM00512H
6. Koralewski M., Pochylski M., Gierszewski J. Magnetic properties of ferritin and akaganeite nanoparticles in aqueous suspension // Nanoparticle Res. 2013. V. 15. P. 1–20.
7. Ван де Хюлст Г. Рассеяние света малыми частицами: пер. с англ. Водопьяновой Т.В., под ред. Соболева В.В. / М.: Ин. Лит, 1961. 537 с.
 Van de Hulst H.C. Light scattering by small particles. N.Y.: John Willey and Sons, London: Chapman and Hall, 1957.
8. Reyes-Coronado A., García-Valenzuela A., SánchezPérez C., et al. Measurement of the effective refractive index of a turbid colloidal suspension using light refraction // Phys. 2005. V. 7. № 1. P. 89. https://doi.org/10.1088/1367-2630/7/1/089
9. Wiederseiner S., Andreini N., Epely-Chauvin G., et al. Refractive-index and density matching in concentrated particle suspensions: A review // Exp. Fluids. 2011. V. 50. № 5. P. 1183–1206. https://doi.org/10.1007/s00348-010-0996-8
10. García-Valenzuela A., Barrera R.G., Sánchez-Pérez C., et al. Coherent reflection of light from a turbid suspension of particles in an internal-reflection configuration: Theory versus experiment. // Opt. Exp. 2005. V. 13. № 18. P. 6723–6737. https://doi.org/10.1364/OPEX.13.006723
11. Garcia-Valenzuela A., Barrera R.G., Gutierrez-Reyes E. Rigorous theoretical framework for particle sizing in turbid colloids using light refraction // Opt. Exp. 2008. V. 16. № 24. P. 19741–19743. https://doi.org/10.1364/OE.16.019741
12. Voitylov A.V., Veso O.S., Petrov M.P., et al. Light refraction in aqueous suspensions of diamond particles // Coll. Surf. A Physicochem. Eng. Asp. 2018. V. 538. P. 417–422. https://doi.org/10.1016/j.colsurfa.2017.10.072
13. Anderson B.B., Brodsky A.M., Burgess L.W. Grating light reflection spectroscopy of colloids and suspensions // Langmuir. 1997. V. 13. № 6. P. 4273–4279. https://doi.org/10.1021/la960624b
14. Hříbalová S., Pabst W. Light scattering and extinction in polydisperse systems // Eur. Ceram. Soc. 2020. V. 40. № 3. P. 867–880. https://doi.org/10.1016/ j.jeurceramsoc.2019.10.054
15. Пячин С.А., Иванов В.И., Цай В.С. Изменение рефрактивных свойств суспензии под действием лазерного излучения // Рег. конф. Физика: фундаментальные и прикладные исследования, образование — ТГУ–2022. Хабаровск, Россия. 7 октября, 2022. C. 144–147.
 Pyachin S.A., Ivanov V.I., Tsai V.S. Changes in the refractive properties of a suspension under the influence of laser radiation [in Russian] // Reg. Conf. Physics: Fundamental and Applied Research, Education — TSU-2022. (Abstracts of reports). Khabarovsk, Russia. October 7, 2022. Р. 144–147.
16. Осипов В.Ю., Романов Н.М. Инфракрасное поглощение алмазных наночастиц с поверхностью, модифицированной комплексами нитрат-ионов // Оптический журнал. 2017. Т. 84. № 5. С. 3–7.
 Osipov V.Y., Romanov N.M. Infrared absorption of diamond nanoparticles with a surface modified by complexes of nitrate ions // J. Opt. Technol. 2017. V. 84. № 5. Р. 285–288. https://doi.org/10.1364/JOT.84.000285
17. Романов Н.М., Осипов В.Ю., Takai K. и др. Исследование терморезистентности функционализированной поверхности детонационного наноалмаза методом инфракрасной спектроскопии // Оптический журнал. 2017. Т. 84. № 10. С. 7–11.
 Romanov N.M., Osipov V.Y., Takai K., et al. Infrared spectroscopic study to determine thermal resistance of the functionalized surface of a detonation nanodiamond // J. Opt. Technol. 2017. V. 84. № 10. Р. 654–657. https://doi.org/10.1364/JOT.84.000654
18. Алексенский А.Е., Вуль А.Я., Коняхин С.В. и др. Оптические свойства гидрозолей детонационных наноалмазов // ФТТ. 2012. Т. 54. № 3. С. 541–547.
 Aleksenskii A.E., Vul’ A.Y., Konyakhin S.V., et al. Optical properties of detonation nanodiamond hydrosols // 80 OPTICHESKII ZHURNAL. 2024. V. 91. № 11. P. 71–81. https://doi.org/10.1134/S1063783412030031
19. Dideikin A.T., Aleksenskii A.E., Baidakova M.V., et al. Rehybridization of carbon on facets of detonation diamond nanocrystals and forming hydrosols of individual particles // Carbon. 2017. V. 122. P. 737–745. https://doi.org/10.1016/j.carbon.2017.07.013
20. Rabchinskii M.K., Ryzhkov S.A., Besedina N.A., et al. Guiding graphene derivatization for covalent immobilization of aptamers // Carbon. 2022. V. 196. P. 264–279. https://doi.org/10.1016/j.carbon.2022.04.072
21. Везо О.С., Войтылов А.В., Войтылов В.В. и др. Исследования рассеяния и рефракции света в водных дисперсных системах детонационного алмаза // Опт. cпектр. 2018. T. 125. № 6. С. 778–785.
 Vezo O.S., Vojtylov A.V., Vojtylov V.V., et al. Investigations of light scattering and refraction in water-dispersed systems of detonation diamond // Opt. Spectrosc. 2018. V. 125. P. 948–955. https://doi.org/10.1134/S0030400X18120214
22. Рабчинский М.К., Трофимук А.Д., Швидченко А.В. и др. Влияние знака дзета-потенциала наноалмазных частиц на морфологию композитов «графен-детонационный наноалмаз» в виде суспензий и аэрозолей // ЖТФ. 2022. Т. 92. № 12. C. 853–868. https://doi.org/10.21883/JTF.2022.12.53913.208-22
 Rabchinskii M.K., Trofimuk A.D., Shvidchenko A.V., et al. The influence of the sign of the zeta potential of nanodiamond particles on the morphology of graphenedetonation nanodiamond composites in the form of suspensions and aerosols // Technical Physics. 2022. V. 92. № 12. P. 1853–1868. https://doi.org/10.21883/TP.2022.12.55197.208-22
23. Сакович Г.В., Жарков А.С., Петров Е.А. Результаты исследований физико-химических процессов детонационного синтеза и применения наноалмазов // Российские нанотехнологии. 2013. Т. 8. № 9–10. С. 53–61.
 Sakovich G.V., Zharkov A.S., Petrov E.A. Results of research into the physicochemical processes of detonation synthesis and nanodiamond applications // Nanotechnologies in Russia. 2013. V. 8. № 9–10. P. 58–66. https://doi.org/10.1134/S1995078013050121
24. Klemeshev S.A., Petrov M.P., Rolich V.I., et al. Static, dynamic and electric light scattering by aqueous colloids of diamond // Diam. Relat. Mater. 2016. V. 69. P. 177–182. https://doi.org/10.1016/j.diamond. 2016. 08.016
25. Войтылов В.В., Клемешев С.А., Петров М.П. и др. Рассеяние света нанодисперсными системами алмаза и графита при ориентационной упорядоченности частиц в электрическом поле // Опт. спектр. 2013.  Т. 114. № 3. С. 474–481.
 Vojtylov V.V., Klemeshev S.A., Petrov M.P., et al. Light scattering by diamond and graphite nanodisperse systems with their particles orientationally ordered in an electric field // Opt. Spectrosc. 2013. V. 114. № 3. P. 432–439. https://doi.org/10.1134/ S0030400X13030260
26. Шифрин К.С. Рассеяние света в мутной среде. М.: Гослитиздат, 1951. 289 c.
 Shifrin K.S. Scattering of light in a turbid environment [in Russian]. Moscow: Goslitizdat, 1951. 289 p.
27. Mochalin V.N., Shenderova O., Ho D., et al. The properties and applications of nanodiamonds // Nature Nanotechnol. 2012. V. 7. № 1. P. 313–350. https://doi.org/ 10.1038/nnano.2011.209
28. Дерягин Б.В. Теория устойчивости коллоидов и тонких пленок. М.: Наука, 1986. 206 с.
 Deryagin B.V. Theory of stability of colloids and thin films [in Russian]. Moscow: Nauka, 1986. 206 p.
29. Бабаджанянц Л.К., Войтылов А.В., Войтылов В.В. и др. Анализ полидисперсности макромолекулярных и нанодисперсных систем электрооптическими методами // Высокомолекулярные соединения. Сер. С. 2010. Т. 52. № 7. С. 1329–1340.
 Babadzhanyants L.K., Voitylov A.V., Voitylov V.V., et al. Analysis of polydispersity of macromolecular and nanodisperse systems by electrooptical methods // Polymer Sci. Ser. C. 2010. V. 52. № 7. P. 93–104. https:// doi.org/10.1134/S181123821001011X
30. Шифрин К.С. Рассеяние света на двуслойных частицах // Изв. АН СССР. Сер. Геофизическая. 1952. Т. 2. С. 15–21.
 Shifrin K.S. Scattering of light on two-layer particles [in Russian] // Reports of the Academy of Sciences of the USSR. Ser. Geophysical. 1952. V. 2. P. 15–21.
31. Weber J.W., Calado V.E., van de Sanden M.C.M. Optical constants of graphene measured by spectroscopic ellipsometry // Appl. Phys. Lett. 2010. V. 97. № 9. 091904. https://doi.org/10.1063/1.3475393
32. Фарафонов В.Г., Устимов В.И. Рассеяние света малыми многослойными частицами: обобщенный метод разделения переменных // Опт. спектр. 2018. Т. 124. № 2. С. 255–263. https://doi.org/10.21883/ OS.2018.02.45533.212-17
 Farafonov V.G., Ustimov V.I. Light scattering by small multilayer particles: A generalized separation of variables method // Opt. Spectr. 2018. V. 124. № 2. P. 252–261. http://doi.org/10.1134/S0030400X18020054