ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2024-91-02-99-111

УДК: 535.21

Selection of regimes for one-step high-throughput laser printing of silver conducting lines on silicon by forward laser transfer

For Russian citation (Opticheskii Zhurnal):

Настулявичус А.А., Кудряшов С.И., Смирнов Н.А., Пахольчук П.П., Шелыгина С.Н., Ултургашева Е.В., Сараева И.Н., Заярный Д.А., Пряхина В.И., Хмеленин Д.Н., Емельянова О.В., Фам Хонг Мин, Фам Ван Донг. Выбор режимов одностадийной высокопроизводительной печати серебряных проводящих дорожек на поверхности кремния методом лазерного переноса // Оптический журнал. 2024. Т. 91. № 2. С. 99–111. http://doi.org/10.17586/1023-5086-2024-91-02-99-111

 

Nastulyavichus A.А., Kudryashov S.I., Smirnov N.А., Paholchuk P.P., Shelygina S.N., Ulturgasheva E.V., Saraeva I.N., Zayarnyi D.A., Pryakhina V.I., Khmelenin D.N, Emelyanova O.V., Pham Hong Minh, Pham Van Duong. Selection of regimes for one-step high-throughput laser printing of silver conducting lines on silicon by forward laser transfer [In Russian] // Opticheskii Zhurnal. 2024. V. 91. № 2. P. 99–111. http://doi.org/10.17586/1023-5086-2024-91-02-99-111

For citation (Journal of Optical Technology):

Alena A. Nastulyavichus, Sergey I. Kudryashov, Nikita A. Smirnov, Petr P. Paholchuk, Svetlana N. Shelygina, Evgenia V. Ulturgasheva, Irina N. Saraeva, Dmitry A. Zayarnyi, Victoria I. Pryakhina, Dmitry N. Khmelenin, Olga V. Emelyanova, Pham Hong Minh, and Pham Van Duong, "Selection of regimes for one-step high-throughput laser printing of silver conducting lines on silicon using forward laser transfer," Journal of Optical Technology. 91(2), 118-124 (2024). https://doi.org/10.1364/JOT.91.000118

Abstract:

The subject of study is conducting tracks on the surface of monocrystalline silicon. The aim of the work is the development of an effective one-stage method for forming conductive elements of electrical circuits on silicon. Method. The deposition of a conductive silver layer is carried out using the method of laser-induced direct transfer from a donor substrate. The selection of laser radiation parameters made it possible to determine the optimal transfer mode to achieve the maximum value of the conductive layer conductivity. The surface topography and chemical composition were studied using scanning and transmission electron microscopy, energy-dispersive X-ray and photoelectron spectroscopy. Main results. The maximum specific conductivity (approximately 54 kS/cm) was obtained when transferring a silver film by laser radiation with a wavelength of 1064 nm, a pulse duration of 120 ns and a power density of 0.21 GW/cm2. The scanning speed in this case was 2000 mm/s, which ensured the arrival of approximately 2 laser pulses at each point of the film, resulting in the transfer of the film material particles to the silicon substrate and their subsequent sintering. Practical significance. The method presented in the work can be used to form the conductive elements of the electrical circuits with high specific conductivity in one stage while simultaneously simplifying the technological process of their formation and reducing its duration.

Keywords:

high-performance laser printing, laser-induced forward transfer, silver films, nanoparticles

Acknowledgements:
the study was supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2023-603). The equipment of the Ural Center for Shared Use “Modern Nanotechnology” of Ural Federal University (Reg. no. 2968), which is supported by the Ministry of Science and Higher Education RF, and of the Center for Collective Use "Structural Diagnostics of Materials" of the Federal Scientific Research Center “Crystallography and Photonics” of the Russian Academy of Sciences was used

OCIS codes: 140.0140, 240.0310

References:

1.    Tretyakov S.D. Modern technologies of radio-electronic equipment production. St. Petersburg: ITMO University, 2016. 102 p.

2.   Yoon I.S., Oh Y., Kim S.H., Choi J., Hwang Y., Park C.H., Ju B.K. 3D printing of self-wiring conductive ink with high stretchability and stackability for customized wearable devices // Advanced Materials Technologies. 2019. V. 4. № 9. P. 1900363. https://doi.org/10.1002/admt.201900363

3.   Naghdi S., Rhee K.Y., Hui D., Park S.J. A review of conductive metal nanomaterials as conductive, transparent, and flexible coatings, thin films, and conductive fillers: Different deposition methods and applications // Coatings. 2018. V. 8. № 8. P. 1–27. https:// doi.org/10.3390/coatings8080278

4.   Kamyshny A., Magdassi S. Conductive nanomaterials for printed electronics // Small. 2014. V. 10. № 17. P. 3515–3535. https://doi.org/10.1002/smll.201303000

5.   Albrecht A., Rivadeneyra A., Abdellah A., Lugli P., Salmerón, J.F. Inkjet printing and photonic sintering of silver and copper oxide nanoparticles for ultra-low-cost conductive patterns // Journal of Materials Chemistry C. 2016. V. 4. № 16. P. 3546–3554. https://doi.org/10.1039/c6tc00628k

6.   Navratil J., Hamacek A., Reboun J., Soukup R. Perspective methods of creating conductive paths by Aerosol Jet Printing technology // 2015 38th International Spring Seminar on Electronics Technology (ISSE). Eger, Hungary. May 06–10. 2015. P. 36–39. https://doi.org/10.1109/ISSE.2015.7247957

7.    Deore B., Sampson K.L., Lacelle T. et al. Direct printing of functional 3D objects using polymerization-induced phase separation // Nat. Commun. 2021. V. 12. № 55. P. 1–12. https://doi.org/10.1038/s41467-020-20256-3

8.   Edri E., Armon N., Greenberg E. et al. Laser printing of multilayered alternately conducting and insulating microstructures // ACS Applied Materials & Interfaces. 2021. V. 13. № 30. P. 36416–36425. https://doi.org/10.1021/acsami.1c06204

9.   Jung S.G., Han Y., Kim J.H. et al. High critical current density and high-tolerance superconductivity in high-entropy alloy thin films // Nat. Commun. 2022. V. 13. P. 3373. https://doi.org/10.1038/s41467-022-30912-5

10. Serra P., Piqué A. Laser-induced forward transfer: fundamentals and applications // Adv. Mater. Technol. 2019. V. 4. № 1. P. 1800099. https://doi.org/10.1002/admt.201800099

11.  Winter S., Zenou M., Kotler Z. Conductivity of laser printed copper structures limited by nano-crystal grain size and amorphous metal droplet shell // Journal of Physics D: Applied Physics. 2016. V. 49. № 16. P. 165310. https://doi.org/10.1088/0022-3727/49/16/165310

12.  Morales M., Munoz-Martin D., Marquez A., Lauzurica S., Molpeceres C. Laser-induced forward transfer techniques and applications // Advances in Laser Materials Processing. 2018. P. 339–379. https://doi.org/10.1016/B978-0-08-101252-9.00013-3

13.  Shugaev M.V., Bulgakova N.M. Thermodynamic and stress analysis of laser-induced forward transfer of metals // Appl. Phys. A. 2010. V. 101. P. 103–109. https://doi.org/10.1007/ s00339-010-5767-0

14.  Lee C.K.W., Pan Y., Yang R., Kim M., Li M.G. Laserinduced transfer of functional materials // Top Curr Chem (Z). 2023. V. 381. № 4. P. 18. https://doi.org/10.1007/s41061-023-00429-6

15.  Chichkov B. Laser printing: trends and perspectives // Appl. Phys. A. 2022. V. 128. № 11. P. 1015. https://doi.org/10.1007/s00339-022-06158-9

16.  Bohandy J., Kim B.F., Adrian F.J. Metal deposition from a supported metal film using an excimer laser // J. Appl. Phys. 1986. V. 60. № 4. P. 1538–1539. https://doi.org/10.1063/1.337287

17.  Avilova E.A., Khairullina E.M., Shishov A.Y., Eltysheva E.A., Mikhailovskii V., Sinev D.A., Tumkin I.I. Direct laser writing of copper micropatterns from deep eutectic solvents using pulsed near-IR radiation // Nanomaterials. 2022. V. 12. № 7. P. 1127. https://doi.org/10.3390/nano12071127

18. Avilova E., Khairullina E., Eltysheva E., Zaikina M., Shishov A., Sinev D., Tumkin I. Fabrication of copper patterns on industrial-used dielectric substrates by direct laser metallization from deep eutectic solvents // ChemRxiv. Cambridge: Cambridge Open Engage, 2023. P. 1–12. https://doi.org/10.26434/chemrxiv-2023-b8pln

19.  Araki T., Mandamparambil R., Martinus Peterus van Bragt D. Stretchable and transparent electrodes based on patterned silver nanowires by laser-induced forward transfer for non-contacted printing techniques // Nanotechnology. 2006. V. 27. № 45. P. 1–8. https://doi.org/10.1088/0957-4484/27/45/45LT02

20. DeVaul R.W., Aminzade D. Agent interfaces for interactive electronics that support social cues // US Patent 0 138 333 A1. 2013. Publ. May 21, 2015.

21.  Makrygianni M., Kalpyris I., Boutopoulos C., Zergioti I. Laser induced forward transfer of Ag nanoparticles ink deposition and characterization // Applied surface science. 2014. V. 297. P. 40–44. https://doi.org/10.1016/j.apsusc.2014.01.069

22. Chen Y., Munoz-Martin D., Morales M., Molpeceres C., Sánchez-Cortezon E., Murillo-Gutierrez J. Laser induced forward transfer of high viscosity silver paste for new metallization methods in photovoltaic and flexible electronics industry // Physics Procedia. 2016. V. 83. P. 204–210. https://doi.org/10.1016/j.phpro.2016.08.010

23. Lim J., Kim Y., Shin J., Lee Y., Shin W., Qu W., Hwang E., Park S., Hong S. Continuous-wave laser-induced transfer of metal nanoparticles toaArbitrary polymer substrates // Nanomaterials. 2020. V. 10. № 4. P. 701. https://doi.org/10.3390/nano10040701

24. Ferraria A.M., Carapeto A.P., Botelho do Rego A.M. X-ray photoelectron spectroscopy: Silver salts revisited // Vacuum. 2012. V. 86. № 12. P. 1988–1991. https://doi.org/10.1016/j.vacuum.2012.05.031

25.      Kaspar T.C., Droubay T., Chambers S.A., Bagus P.S. Spectroscopic evidence for Ag(III) in highly oxidized silver films by X-ray photoelectron spectroscopy // J. Phys. Chem. C. 2010. V. 114. № 49. P. 21562–21571. https://doi.org/10.1021/jp107914e