ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2024-91-03-115-123

УДК: 531.742: 62.791

Matrix measurement technology. The accuracy of measuring the coordinates of the elements and the control of the photomasks

For Russian citation (Opticheskii Zhurnal):

Королев А.Н., Лукин А.Я., Филатов Ю.В., Венедиктов В.Ю. Матричная технология измерений. Точность измерения координат элементов и контроль фотошаблонов // Оптический журнал. 2024. Т. 91. № 3. С. 115–123. http://doi.org/10.17586/1023-5086-2024-91-03-115-123

 

Korolev A.N., Lukin A.Ya., Filatov Yu.V., Venediktov V.Yu. Matrix measurement technology. The accuracy of measuring the coordinates of the elements and the control of the photomasks [in Russian] // Optickhesii Zhurnal. 2024. V. 91. № 3. P. 115–123. http://doi.org/10.17586/1023-5086-2024-91-03-115-123

For citation (Journal of Optical Technology):

Alexander N. Korolev, Alexander Ya. Lukin, Yuri V. Filatov, and Vladimir Yu. Venediktov, "Matrix measurement technology: accuracy of measuring element coordinates and photomask control," Journal of Optical Technology. 91(3), 203-208 (2024).  https://doi.org/10.1364/JOT.91.000203

Abstract:

Subject of study. A new technology for linear-angular measurements, based on the use of a multielement mark and obtaining measurement information about the angular and linear shift from a set of measurements for all elements of the mark image; accuracy of measuring the coordinates of brand image elements in a matrix meter. Aim of the study. Obtaining estimates of errors in measuring the coordinates of mark image elements during experimental studies. Method. The error of measuring the coordinates of the elements of the synthesized image of the stamp based on the measurement results is investigated. Main results. Real measurements of the coordinates of the elements were performed in the presence of distortions due to lens distortion and manufacturing errors of the mark. The possibility of separating these distortions, measuring their parameters and correcting them to the error values obtained on a digital model is shown. Practical significance. It is shown that the procedure for determining and correcting image distortions can be used as the basis for a measuring complex for controlling the technology of manufacturing photomasks at all stages. The conducted research shows that this problem can be solved at an error level of 0.2 μm for a large number of zones with a density of up to 40 000 elements per 1 cm2.

Keywords:

matrix measurement technology, matrix meter, measuring mark, correction of mark image distortions

Acknowledgements:

this work was carried out with financial support from the Russian Science Foundation, grant № 20-19-00412

OCIS codes: 120.0120, 230.0230

References:
1. Bridges A., Yacoot A., Kissinger T., Humphreys D.A., Tatam R.P. Correction of periodic displacement non-linearities by two-wavelength interferometry // Measurement Sci. and Technol. 2021. V. 32. № 12. P. 125202. http://doi.org/10.1088/1361-6501/ac1dfa
2. Peggs G.N., Yacoot A. A review of recent work in subnanometre displacement measurement using optical and X-ray interferometr // Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sci. 2002. V. 360. № 1794. P. 953–968. http://doi.org/10.1098/rsta.2001.0976
3. Wang X., Su J., Yang J., Miao L., Huang T. Investigation of heterodyne interferometer technique for dynamic angle measurement: Error analysis and performance evaluation // Measurement Sci. and Technol. 2021. V. 32. № 10. P. 105016. http://doi.org/10.1088/1361-6501/ac0d77
4. Wentao Zhang, Wang Yulin, Hao Du, Qilin Zeng, Xianming Xiong. High-precision displacement measurement model for the grating interferometer system // Optical Engineering. 2020. V. 59. № 4. Р. 045101. doi.org/10.1117/1.OE.59.4.045101
5. Kimura A., Hosono K., Kim W., Shimizu Y., Gao W., Zeng L. A two-degree-of-freedom linear encoder with a mosaic scale grating // Internat. J. Nanomanufacturing. 2011. V. 7. № 1. P. 73–91. http://doi.org/10.1504/IJNM.2011.039964
6. Zherdev A.Y., Odinokov S.B., Lushnikov D.S., Markin V.V., Gurylev O.A., Shishova M.V. Optical position encoder based on four-section diffraction grating //Proc. SPIE — The Internat. Soc. for Optical Engineering. 2017. 10233. Art. № 102331I. http://doi.org/10.1117/12.2304939
7. Yunfei Yin, Zhaowu Liu, Shan Jiang, et al. High-precision 2D grating displacement measurement system based on double-spatial heterodyne optical path interleaving // Optics and Lasers in Engineering. 2022. V. 158. P. 107167. http://doi.org/10.1016/j.optlaseng. 2022.107167
8. Yunfei Yin, Lin Liu, Yu Bai, et al. Littrow 3D measurement based on 2D grating dual-channel equal-optical path interference // Optics Express. 2022. V. 30. № 23. P. 41671. http://doi.org/10.1364/oe.475830
9. Changhai Zhao, Qiuhua Wan, Lihui Liang. Compensation for dynamic subdivision error when the grating displacement sensor code disk is stained // IEEE Sensors J. 2023. V. 23. № 3. P. 2403. http://doi.org/10.1109/jsen.2022.3232708
10. Xu, Y., Brownjohn, J.M.W. Review of machine-vision based methodologies for displacement measurement in civil structures // J. Civil. Struct. Health Mon. 2018. V. 8. P. 91–110. http://doi.org/10.1007/s13349-017-0261-4
11. Feng D., Feng M.Q., Ozer E., Fukuda Y. A visionbased sensor for noncontact structural displacement measurement // Sensors. 2015. V. 15. P. 16557–16575. http://doi.org/10.3390/s150716557
12. Cheng F., Zhou D., Yu Q., Tjahjowidodo T. New image grating sensor for linear displacement measurement and its error analysis // Sensors. 2022. V. 22. P. 4361. http://doi.org/10.3390/s22124361
13. Liu B., Zhang D., Guo J., Zhu C. Vision-based displacement measurement sensor using modified Taylor approximation approach // Opt. Eng. 2016. V. 55. P. 114103. http://doi.org/10.1117/1.OE.55.11.114103
14. André N., Sandoz P., Mauzé B., Jacquot M., Laurent G.J. Robust phase-based decoding for absolute (X, Y, Θ) positioning by vision // IEEE Trans. Inst. Meas. 2021. V. 70. P. 1–12. http://doi.org/10.1109/TIM.2020.3009353
15. Королев А.Н., Лукин А.Я., Филатов Ю.В., Венедиктов В.Ю. Матричная технология линейно-угловых измерений // Оптический журнал. 2022. Т. 89. № 12. С. 54–64. http://doi.org/10.17586/1023-5086-2022-89-12-54-64
Korolev A.N., Lukin A.Ya., Filatov Yu.V., Venediktov V.Yu. Matrix technology of linear-angular measurements // Journal of Optical Technology. 2022. V. 89. № 12. P. 733–739. https://doi.org/10.1364/JOT.89.000733
16. Королев А.Н., Лукин А.Я., Полищук Г.С. Новая концепция измерения угла. Модельные и экспериментальные исследования // Оптический журнал. 2012. Т. 79. № 6. C. 52–58. http://doi.org/10.17586/1023-5086-2022-89-12-54-64
Korolev A.N., Lukin A.Ya., Polishchuk G.S. New concept of angular measurement. Model and experimental studies // Journal of Optical Technology. 2012. V. 79. № 6. P. 352–356. https://doi.org/10.1364/JOT.79.000352
17. Бохман Е.Д., Венедиктов В.Ю., Королев А.Н., Лукин А.Я. Цифровой измеритель угла с двумерной шкалой // Оптический журнал. 2018. Т. 85. № 5. С. 19–25. http://doi.org/10.17586/1023-5086-2018-85-05-19-25
Bokhman E.D., Venediktov V.Yu., Korolev A.N., Lukin A.Ya. Digital goniometer with a two-dimensional scale // Journal of Optical Technology. 2018. V. 85. № 5. P. 269–274. https://doi.org/10.1364/JOT.85.000269
18. Korolev A.N., Lukin A.Ya., Filatov Y.V., Venediktov V.Y. Reconstruction of the image metric of periodic structures in an opto-digital angle measurement system // Sensors. 2021. V. 21. P. 4411. http://doi.org/10.3390/s21134411